Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T22:54:50.481Z Has data issue: false hasContentIssue false

A SIMULATION MODEL OF HOUSE FLY (DIPTERA: MUSCIDAE) DEVELOPMENT IN POULTRY MANURE

Published online by Cambridge University Press:  31 May 2012

T.J. Lysyk
Affiliation:
Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA27695–7613
R.C. Axtell
Affiliation:
Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA27695–7613

Abstract

Developmental times were determined at constant temperatures for egg–larval (prepupal) and egg–larval–adult (preadult) house flies in poultry manure. Developmental time decreased as temperature increased but declined at temperatures above 35°C. The average time from oviposition to pupation ranged from 26.8 days at 16°C to 5.2 days at 35°C, and the average time to adult emergence ranged from 43.1 to 8.8 days. Pupae were formed at 41°C, but no adults emerged above 38°C. The relationship between developmental rate and temperature was determined and used in a rate summation model to simulate prepupal and preadult developmental times in poultry manure, with manure bed temperature as input. The model was tested on the basis of developmental times determined in a poultry house during the fly-breeding season. The observed mean time to pupation under field temperatures ranged from 6.7 to 15.6 days, and adult emergence required from 12.5 to 27.1 days. Simulations were closest to the observed times when actual manure bed temperatures were used as input; however, soil temperatures obtained from a nearby weather station also provided satisfactory simulation results after an empirical correction was used.

Résumé

Les temps de développement de la mouche domestique jusqu’aux stades pupal et adulte dans le fumier de volaille ont été mesurés à des températures constantes. Ces temps diminuaient plus la température était élevée, jusqu’à 35°C. Le temps moyen de l’oviposition à la pupation a varié de 26,8 jours à 16°C, à 5,2 jours à 35°C, tandis que l’intervalle des temps moyens jusqu’à la sortie des adultes a été de 43,1 à 8,8 jours. À 41°C, il y a eu formation de pupes, mais aucun adulte n’a émergé à plus de 38°C. La relation entre la vitesse du développement et la température a été déterminée, et la fonction obtenue a été utilisée dans un modèle de sommation pour la simulation des températures de développement jusqu’aux stades pupal et adulte dans le fumier de volaille où la température du lit de fumier était la donnée de départ. Le modèle a été contrôlé avec des données sur les temps de développement mesurés dans un poulailler durant la saison de reproduction de la mouche. Les temps moyens observés jusqu’à la pupation aux températures locales ont varié de 6,7 à 15,6 jours, et il a fallu de 12,5 à 27,1 jours jusqu’à l’émergence des adultes. Les données de simulation se rapprochent le plus des temps observés lorsque les températures du lit de fumier sont employées comme données de départ; toutefois, les données sur la température du sol obtenues d’une station météorologique de la région ont également permis une simulation satisfaisante après une correction empirique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berry, I.L., Kunz, S.E., and Foerster, K.W.. 1977. A dynamic model of the physiological development of immature stable flies. Ann. ent. Soc. Am. 70: 173176.CrossRefGoogle Scholar
Boyne, J.V., Rock, G.C., and Stinner, R.E.. 1985. Temperature-dependent development models for simulating nondiapause development in Platynota idaeusalis (Lepidoptera: Tortricidae) in North Carolina. Environ. Ent. 14: 785789.CrossRefGoogle Scholar
Curry, G.L., Feldman, R.M., and Smith, K.C.. 1978. A stochastic model of a temperature-dependent population. Theor. Pop. Biol. 13: 197213.CrossRefGoogle ScholarPubMed
Greenham, P.M. 1972. The effect of the temperature of cattle dung on the rate of development of the larvae of the Australian bush fly, Musca vetustissimia Walker (Diptera: Muscidae). J. Anim. Ecol. 41: 429437.CrossRefGoogle Scholar
Larsen, E.R., and Thomsen, M.. 1940. The influence of temperature on the development of some species of Diptera. Repr. fr. Vidensk. Medd. fra. Dansk Naturh. Foren, Bd. 104.Google Scholar
Lysyk, T.J., and Axtell, R.C.. 1986. A field evaluation of three methods for monitoring house flies (Musca domestica) (Diptera: Muscidae) and other filth flies in three types of poultry housing systems. J. econ. Ent. 79: 144151.CrossRefGoogle ScholarPubMed
Moon, R.D. 1983. Simulating developmental time of preadult face flies (Diptera: Muscidae) from air temperature records. Environ. Ent. 12: 943948.CrossRefGoogle Scholar
Palmer, W.A., Bay, D.E., and Sharpe, P.J.H.. 1981. Influence of temperature on the development and survival of the immature stages of the horn fly, Haematobia irritans irritans (L.). Prot. Ecol. 3: 299309.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction rate theory. J. Theor. Biol. 88: 719731.CrossRefGoogle ScholarPubMed
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Stinner, R.E., Gutierrez, A.P., and Butler, G.D. Jr., 1974. An algorithm for temperature-dependent growth rate simulation. Can. Ent. 106: 519524.CrossRefGoogle Scholar
Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Sharpe, R.M., Schoolfield, R.M., and Coulson, R.N.. 1984 a. Modeling insect development rates: a literature review and application of a biophysical model. Ann. ent. Soc. Am. 77: 208225.CrossRefGoogle Scholar
Wagner, T.L., Wu, H.I., Sharpe, P.J.H., and Coulson, R.N.. 1984 b. Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann. ent. Soc. Am. 77: 475487.CrossRefGoogle Scholar