Hostname: page-component-788cddb947-w95db Total loading time: 0 Render date: 2024-10-15T10:04:23.410Z Has data issue: false hasContentIssue false

Sex-related difference in the ability of Carabus lewisianus (Coleoptera: Carabidae) to escape from pitfall traps

Published online by Cambridge University Press:  02 April 2012

Hanae Yamashita
Affiliation:
Forest Zoology Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo 113-8657, Japan
Katsumi Togashi*
Affiliation:
Forest Zoology Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo 113-8657, Japan
Keizi Kiritani
Affiliation:
Futo 1020-292, Ito, Shizuoka 413-0231, Japan
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Carabid beetles can escape from pitfall traps. To determine whether or not a female-biased sex ratio for catches of Carabus lewisianus Breuning from pitfall traps could be explained by sexual differences in the rates of capture by and escape from traps, we performed two laboratory experiments to estimate these rates using mathematical models. The results indicated that the two sexes dropped into the pitfall traps at almost equal rates (0.0456/min for females and 0.0366/min for males) and that males escaped from the traps at rates of 0.0591 and 0.0889/min, but no females managed to escape. The bias of escape rates in the field is shown by the higher captures of female C. lewisianus by pitfall traps. Calibration of capture and escape rates suggested similar activity densities of the two sexes in the field. Development of more accurate measures of the number of the relevant sex on the soil surface, and of the methodology for estimating the values of parameters in the field is discussed.

Résumé

Les carabes (Coleoptera : Carabidae) peuvent s’échapper des pièges à fosse. Afin de déterminer si le rapport des sexes qui favorise les femelles dans des captures de Carabus lewisianus Breuning faites dans des pièges à fosse s’expliquent par des différences sexuelles du taux de capture et du taux d'évasion des pièges, nous avons mené deux expériences de laboratoire pour estimer ces taux à l'aide de modèles mathématiques. Les expériences indiquent que les individus des deux sexes tombent dans les pièges à fosse à des taux presque égaux par minute (0,0456 chez les femelles et 0,0366 chez les mâles); les mâles s'échappent des pièges à un taux de 0,0591 ou de 0,0889 par minute, alors qu'aucune femelle ne réussit à s'évader. Les différences dans les évasions en nature se manifestent par la proportion plus élevée de femelles dans les captures de C. lewisianus dans les pièges à fosse. La calibration des taux de capture et d'évasion laisse croire à une densité d'activité semblable chez les deux sexes en nature. Nous discutons de la mise au point de méthodes plus précises pour déterminer le nombre d'individus d'un sexe donné à la surface du sol et de la méthodologie pour estimer la valeur des paramètres en nature.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Analytical Software 2000. Statistix 7. Tallahassee, Florida.Google Scholar
Baars, M.A. 1979. Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia, 41: 2546. doi:10.1007/BF00344835.CrossRefGoogle ScholarPubMed
Cárcamo, H.A., and Spence, J.R. 1994. Crop type effects on the activity and distribution of ground beetles (Coleoptera: Carabidae). Environmental Entomology, 23: 684692.CrossRefGoogle Scholar
Jensen, T.S., Dyring, L., Kristensen, B., Nielsen, B.O., and Rasmussen, E.R. 1989. Spring dispersal and summer habitat distribution of Agonum dorsale (Coleoptera: Carabidae). Pedobiologia, 33: 155165.CrossRefGoogle Scholar
Kiritani, K., and Yamashita, H. 2008. Phenology of reproduction and the lower development threshold in Carabus lewisianus Breuning. Japanese Journal of Applied Entomology and Zoology, 52: 7786. doi:10.1303/jjaez.2008.77.CrossRefGoogle Scholar
Koivula, M., Kotze, D.J., Hiisivuori, L., and Rita, H. 2003. Pitfall trap efficiency: do trap size, collecting fluid and vegetation structure matter? Entomologica Fennica, 14: 114.CrossRefGoogle Scholar
Kromp, B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture Ecosystems and Environment, 74: 187228. doi: 10.1016/S0167-8809(99)00037-7.CrossRefGoogle Scholar
Levesque, C., and Levesque, G.Y. 1994. Abundance and seasonal activity of ground beetles (Coleoptera: Carabidae) in a raspberry plantation and adjacent sites in southern Quebec (Canada). Journal of the Kansas Entomological Society, 67: 73101.Google Scholar
Lövei, G.L., and Sunderland, K.D. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41: 231256. PMID:15012329.CrossRefGoogle ScholarPubMed
Luff, M.L. 1975. Some features influencing efficiency of pitfall traps. Oecologia, 19: 345357.CrossRefGoogle ScholarPubMed
Luff, M.L. 1986. Aggregation of some Carabidae in pitfall traps. In Carabid beetles: their adaptations and dynamics. Edited by den Boer, P.J., Luff, M.L., Mossakowski, D., and Weber, F.. Gustav Fischer, Stuttgart and New York. pp. 386397.Google Scholar
Pekar, S. 2002. Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. Pedobiologia, 46: 539547. doi:10.1078/0031-4056-00158.CrossRefGoogle Scholar
Petruska, F. 1969. On the possibility of escape of the various components of the epigaeic fauna of the fields from the pitfall traps containing Formalin (Coleoptera). Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, 31: 99124.Google Scholar
Shpeley, D., and Ball, G.E. 1978. Anisocnemus, a neotropical genus: classification and geographical distribution (Coleoptera: Carabidae: Harpalini). The Coleopterists Bulletin, 32: 7792.Google Scholar
SPSS Inc 1998. Systat 8.0. Chicago, Illinois.Google Scholar
Takami, Y., and Suzuki, H. 2005. Morphological, genetic and behavioural analyses of a hybrid zone between the ground beetles Carabus lewisianus and C. albrechti (Coleoptera: Carabidae): asymmetrical introgression caused by movement of the zone? Biological Journal of the Linnean Society, 86: 7994. doi:10.1111/j.1095-8312.2005.00527.x.CrossRefGoogle Scholar
Thiele, H.U. 1977. Carabid beetles in their environments: a study on habitat selection by adaptations in physiology and behaviour. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Ishikawa, R. 1985. Carabinae. In The Coleoptera of Japan in color. Vol. II. Edited by Ueno, S. and Kurosawa, Y. and Sato, M.. Hoikusha Publishing Company Ltd., Higashi-Osaka, Japan. pp. 1454. [In Japanese.]Google Scholar
Waage, B.E. 1985. Trapping efficiency of carabid beetles in glass and plastic pitfall traps containing different solutions. Fauna Norvegica Series B, 32: 3336.Google Scholar
Wallin, H., and Ekbom, B. 1994. Influence of hunger level and prey densities on movement patterns in 3 species of Pterostichus beetles (Coleoptera: Carabidae). Environmental Entomology, 23: 11711181.CrossRefGoogle Scholar
Yamashita, H., Kiritani, K., Togashi, K., and Kubota, K. 2006. Wing dimorphism in three carabid species living in the grasslands of Mt. Omuro, Shizuoka, Japan. Applied Entomology and Zoology, 41: 463470. doi: 10.1303/aez.2006. 463.CrossRefGoogle Scholar