Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T16:47:30.011Z Has data issue: false hasContentIssue false

SELF-SUPERPARASITISM IN THE SOLITARY PARASITOID MONOCTONUS PAULENSIS (HYMENOPTERA: BRACONIDAE, APHIDIINAE): PROXIMATE MECHANISMS

Published online by Cambridge University Press:  31 May 2012

Amanda Chau
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Manfred Mackauer*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*
1Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Monoctonus paulensis (Ashmead) was reared in the laboratory on the four nymphal instars of the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea: Aphididae). Females frequently laid clutches of two eggs during a single ovipositor probe; however, clutches of more than two eggs were rare. The time needed to capture and position an aphid for oviposition increased with aphid instar but was independent of the number of eggs laid. Oviposition time was proportional to egg number, which shows that eggs were laid one at a time rather than clumped together as a package. Intensity of parasitism (i.e., number of eggs per parasitized host) increased with host instar but declined with the number of hosts attacked in quick succession. Our results suggest that clutch size in M. paulensis is not accidental but controlled by the female.

Résumé

Des Monoctonus paulensis (Ashmead) ont été élevés en laboratoire sur des pucerons Acyrthosiphon pisum (Harris) (Hemiptera : Aphidoidea : Aphididae) des quatre stades larvaires. Les femelles pondent deux oeufs à la fois en fouillant avec leur oviscapte, mais les masses de plus de deux oeufs sont rares. Le temps nécessaire aux femelles pour la capture et le positionnement du puceron pour y pondre augmente avec le stade du puceron, mais n’est pas relié au nombre d’oeufs pondus. La durée de la ponte est proportionnelle au nombre d’oeufs, ce qui démontre que les oeufs sont pondus un à un et non en paquets. La gravité du parasitisme (i.e., le nombre d’oeufs par hôte parasité) augmente en fonction du stade de l’hôte, mais diminue lorsqu’augmente le nombre d’hôtes attaqués en succession rapide. Nos résultats indiquent que le nombre d’oeufs dans une masse chez M. paulensis n’est pas accidentel, mais est déterminé par la femelle.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blumberg, D., Luck, R.E. 1990. Differences in the rates of superparasitism between two strains of Comperiella bifasciata (Howard) (Hymenoptera: Encyrtidae) parasitizing California red scale (Homoptera: Diaspidae): an adaptation to circumvent encapsulation? Annals of the Entomological Society of America 83: 591–7Google Scholar
Calvert, D.J., van den Bosch, R. 1972 a. Behavior and biology of Monoctonus paulensis (Hymenoptera: Braconidae), a parasite of dactynotine aphids. Annals of the Entomological Society of America 65: 773–9Google Scholar
Calvert, D.J., van den Bosch, R. 1972 b. Host range and specificity of Monoctonus paulensis (Hymenoptera: Braconidae) a parasite of certain dactynotine aphids. Annals of the Entomological Society of America 65: 422–32Google Scholar
Campbell, A., Mackauer, M. 1975. Thermal constants for development of the pea aphid (Homoptera: Aphididae) and some of its parasites. The Canadian Entomologist 107: 419–23Google Scholar
Chau, A., Mackauer, M. 1997. Dropping of pea aphids from feeding site: a consequence of parasitism by the wasp, Monoctonus paulensis. Entomologia Experimentalis et Applicata 83: 247–52Google Scholar
Gaines, S.D., Rice, W.R. 1990. Analysis of biological data when there are ordered expectations. The American Naturalist 135: 310–7Google Scholar
Gerling, D., Roitberg, B.D., Mackauer, M. 1990. Instar-specific defense of the pea aphid, Acyrthosiphon pisum: influence on oviposition behavior of the parasite Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Insect Behavior 3: 501–14Google Scholar
Godfray, H.C.J. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton: Princeton University PressGoogle Scholar
Griffiths, D.C. 1960. The behaviour and specificity of Monoctonus paludum Marshall (Hym., Braconidae), a parasite of Nasonovia ribis-nigri (Mosley) on lettuce. Bulletin of Entomological Research 51: 303–19Google Scholar
Hubbard, S.F., Marris, G., Reynolds, A., Rowe, G.W. 1987. Adaptive patterns in the avoidance of superparasitism by solitary parasitoid wasps. Journal of Animal Ecology 56: 387401Google Scholar
Losey, J.E., Denno, R.E. 1998. The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecological Entomology 23: 5361Google Scholar
Mackauer, M. 1990. Host discrimination and larval competition in solitary endoparasitoids. pp. 4162in Mackauer, M., Ehler, L.E., Roland, J. (Eds.), Critical Issues in Biological Control. Intercept: AndoverGoogle Scholar
Mackauer, M., Bai, B., Chow, A., Danyk, T. 1992. Asymmetric larval competition between two species of solitary parasitoid wasps: the influence of superparasitism. Ecological Entomology 17: 233–6Google Scholar
Michaud, J.P., Mackauer, M. 1995 a. Oviposition behavior of Monoctonus paulensis (Hymenoptera: Aphidiidae): factors influencing reproductive allocation to hosts and host patches. Annals of the Entomological Society of America 88: 220–6Google Scholar
Michaud, J.P., Mackauer, M. 1995 b. The use of visual cues in host evaluation by aphidiid wasps. II. Comparison between Ephedrus californicus, Monoctonus paulensis, and Praon pequodorum. Entomologia Experimentalis et Applicata 74: 267–75Google Scholar
Pijls, JWAM, Hofker, K.D., van Staalduinen, M.J., van Alphen, J.M. 1995. Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A. (E.) diversicornis, parasitoids of the cassava mealybug, Phenacoccus manihoti. Ecological Entomology 20: 326–32Google Scholar
Puttler, B. 1974. Hyperica postica and Bathyplectes curculionis: encapsulation of parasite eggs by host larvae in Missouri and Arkansas. Environmental Entomology 3: 881–2Google Scholar
Rohlf, F.J., Slice, D.E. 1996. BIOMstat for Windows, Version 3.2. Statistical Software for Biologists. Setauket: Exeter SoftwareGoogle Scholar
Rosenheim, J.A., Hongkham, D. 1996. Clutch size in an obligately siblicidal parasitoid wasp. Animal Behaviour 51: 841–52CrossRefGoogle Scholar
Salt, G. 1961. Competition among insect parasitoids. Symposium of the Society for Experimental Biology 15: 96119Google Scholar
Schlinger, E.I., Hall, J.C. 1961. The biology, behavior, and morphology of Trioxys (Trioxys) utilis, an internal parasite of the spotted alfalfa aphid, Therioaphis maculata (Hymenoptera: Braconidae, Aphidiinae). Annals of the Entomological Society of America 54: 3445Google Scholar
Sokal, R.R., Rohlf, F.J. 1995. Biometry. 3rd ed. New York: WH FreemanGoogle Scholar
Streams, F.A. 1971. Encapsulation of insect parasites in superparasitized hosts. Entomologia Experimentalis et Applicata 14: 484–90Google Scholar
van Alphen, J.J.M., Visser, M.E. 1990. Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology 35: 5979Google Scholar
van Dijken, M.J., Waage, J.K. 1987. Self and conspecific superparasitism by the egg parasitoid Trichogramma evanescens. Entomologia Experimentalis et Applicata 43: 183–92Google Scholar
van Dijken, M.J., van Stratum, P., van Alphen, J.J.M. 1992. Recognition of individual-specific marked parasitized hosts by the solitary parasitoid Epidinicarsis lopezi. Behavioural Ecology and Sociobiology 30: 7782Google Scholar
Visser, M.E. 1993. Adaptive self- and conspecific superparasitism in the solitary parasitoid Leptopilina heterotoma. Behavioral Ecology 4: 22–8Google Scholar