Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T15:56:58.441Z Has data issue: false hasContentIssue false

Selection of Aedes aegypti (Diptera: Culicidae) strains that are susceptible or refractory to Dengue-2 virus

Published online by Cambridge University Press:  23 April 2013

Paola A. Caicedo
Affiliation:
Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Carrera 125 No. 19–225, Santiago de Cali, Colombia
Olga L. Barón
Affiliation:
Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Carrera 125 No. 19–225, Santiago de Cali, Colombia
Mauricio Pérez
Affiliation:
Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Carrera 125 No. 19–225, Santiago de Cali, Colombia
Neal Alexander
Affiliation:
Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Carrera 125 No. 19–225, Santiago de Cali, Colombia
Carl Lowenberger
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
Clara B. Ocampo*
Affiliation:
Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Carrera 125 No. 19–225, Santiago de Cali, Colombia
*
1Corresponding author (e-mail: [email protected]).

Abstract

The vector competence (VC) of Aedes aegypti (Linnaeus) (Diptera: Culicidae) varies geographically and is affected by both genetic and environmental factors. Understanding the molecular mechanisms that influence VC may help develop novel control strategies. The selection of susceptible and refractory strains is the first step in this process. We collected immature A. aegypti in the field and established strains that were susceptible and refractory to Dengue-2 virus by isofamily selection through several generations. Infection was detected by immunofluorescence of head or midgut tissues to determine infection barriers and the % of VC by tissue. We selected three strains: Susceptible (Cali-S) (96.4% susceptible at F19), Refractory with a midgut escape barrier (Cali-MEB) (44.1% refractory at F15), and Refractory with a midgut infection barrier (Cali-MIB) (40% refractory at F16). The effects of the infection were measured using Kaplan–Meier survival rates over the first seven generations. All selected strains showed a similar decrease in survival and in the number of eggs laid/female through the seven generations, suggesting that changes were a result of the selection process rather than the virus infection. The results of this study suggest that VC is associated with multiple genes, which have additive effects on susceptibility.

Résumé

La compétence vectorielle (CV) d’Aedes aegypti (Linnaeus) (Diptera: Culicidae) varie géographiquement et est influencée par des facteurs génétiques et environnementaux. Comprendre les mécanismes moléculaires qui affectent la CV pourrait aider à développer de nouvelles stratégies de contrôle des moustiques. La sélection de souches susceptibles et réfractaires est la première étape dans ce processus. Nous avons recueilli des A. aegypti immatures sur le terrain et des souches susceptibles et réfractaires au virus dengue-2 on été établies par la sélection d'isofamilles sur plusieurs générations. L'infection a été détectée par immunofluorescence sur des tissus de la tête ou de l'intestin moyen pour déterminer les barrières d'infection et le % de CV par tissu. Nous avons sélectionné trois souches: Susceptible (Cali-S) (96,4% sensibles à F19), Réfractaire avec une barrière contre la dissémination dans l'intestin moyen (Cali-MEB) (44,1% réfractaire à F15) et Réfractaires avec une barrière contre l'infection dans l'intestin moyen (Cali-MIB) (40% réfractaire à F16). Les effets de l'infection ont été mesurés en utilisant les taux de survie de Kaplan–Meier au cours des sept premières générations. Toutes les souches sélectionnées ont montré une diminution similaire du taux de survie et du nombre d'oeufs pondus/femelle à travers les sept générations, ce qui suggère que les changements sont le résultat du processus de sélection plutôt que l'infection par le virus. Les résultats de cette étude suggèrent que la CV est associée à de multiples gènes qui ont des effets additifs sur la susceptibilité.

Type
Physiology, Biochemistry, Development, and Genetics
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alphey, L., Beard, C.B., Billingsley, P., Coetzee, M., Crisanti, A., Curtis, C., et al. 2002. Malaria control with genetically manipulated insect vectors. Science, 298: 119121.CrossRefGoogle ScholarPubMed
Armitage, P., Berry, G., Matthews, J. 2001. Statistical methods in medical research, 4th ed. Oxford Blackwell Scientific Publications, Oxford, United Kingdom.Google Scholar
Barón, O.L., Ursic Bedoya, R., Lowenberger, C., Ocampo, C. 2010. Differential gene expression from midguts of refractory and susceptible lines of Aedes aegypti infected with dengue-2 virus. Journal of Insect Science, 10: Article 41.CrossRefGoogle ScholarPubMed
Beerntsen, B.T., James, A.A., Christensen, B.M. 2000. Genetics of mosquito vector competence. Microbiology and Molecular Biology Reviews, 64: 115137.CrossRefGoogle ScholarPubMed
Bennett, K.E., Flick, D., Fleming, K.H., Jochim, R., Beaty, B.J., Black, W.C. 2005. Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics, 170: 185194.CrossRefGoogle ScholarPubMed
Bennett, K.E., Olson, K.E., Munoz Mde, L., Fernandez-Salas, I., Farfan-Ale, J.A., Higgs, S., et al. 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. American Journal of Tropical Medicine and Hygiene, 67: 8592.CrossRefGoogle ScholarPubMed
Black, W.C., Bennett, K.E., Gorrochotegui-Escalante, N., Barillas-Mury, C.V., Fernandez-Salas, I., de Lourdes Munoz, M., et al. 2002. Flavivirus susceptibility in Aedes aegypti. Archives of Medical Research, 33: 379388.CrossRefGoogle ScholarPubMed
Bosio, C.F., Beaty, B.J., Black, W.C. IV 1998. Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. American Journal of Tropical Medicine and Hygiene, 59: 965970.CrossRefGoogle ScholarPubMed
Bosio, C.F., Fulton, R.E., Salasek, M.L., Beaty, B.J., Black, W.C. 2000. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics, 156: 687698.CrossRefGoogle ScholarPubMed
Courtney, C.C., Christensen, B.M., Goodman, W.G. 1985. Effect of Dirofilaria immitis on blood meal size and fecundity in Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 22: 398400.CrossRefGoogle ScholarPubMed
Gubler, D.J., Nalim, S., Tan, R., Saipan, H., Sulianti Saroso, J. 1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. American Journal of Tropical Medicine and Hygiene, 28: 10451052.CrossRefGoogle ScholarPubMed
Gubler, D.J.Rosen, L. 1976. Variation among geographic strains of Aedes albopictus in susceptibility to infection with dengue viruses. American Journal of Tropical Medicine and Hygiene, 25: 318325.CrossRefGoogle ScholarPubMed
Hardy, J.L. 1988. Susceptibility and resistance of vector mosquitoes. In The arboviruses: epidemiology and ecology. Edited by T.P. Monath. CRC Press, Boca Raton, Florida, United States of America. pp. 87126.Google Scholar
Hardy, J.L., Apperson, G., Asman, S.M., Reeves, W.C. 1978. Selection of a strain of Culex tarsalis highly resistant to infection following ingestion of western equine encephalomyelitis virus. American Journal of Tropical Medicine and Hygiene, 27: 313321.CrossRefGoogle ScholarPubMed
Higgs, S., Traul, D., Davis, B.S., Kamrud, K.I., Wilcox, C.L., Beaty, B.J. 1996. Green fluorescent protein expressed in living mosquitoes – without the requirement of transformation. Biotechniques, 21: 660664.CrossRefGoogle ScholarPubMed
Javadian, E.Macdonald, W.W. 1974. The effect of infection with Brugia pahangi and Dirofilaria repens on the egg-production of Aedes aegypti. Annals of Tropical Medicine and Parasitology, 68: 477481.CrossRefGoogle ScholarPubMed
Kershaw, W.E., Crewe, W., Beesley, W.N. 1954. Studies on the intake of microfilariae by their insect vectors, their survival, and their effect on the survival of their vectors. II. The intake of the microfilariae of Loa loa and Acanthocheilonema perstans by Chrysops spp. Annals of Tropical Medicine and Parasitology, 48: 102109.CrossRefGoogle ScholarPubMed
Lambrechts, L. 2011. Quantitative genetics of Aedes aegypti vector competence for dengue viruses: towards a new paradigm? Trends in Parasitology, 27: 111114. doi: 10.1016/j.pt.2010.12.001.CrossRefGoogle ScholarPubMed
Lambrechts, L, Paaijmans, KP, Fansiri, T, Carrington, LB, Kramer, LD, Thomas, MB, et al. 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proceedings of the National Academy of Science of the United States of America, 108: 74607465. doi: 10.1073/pnas.1101377108.CrossRefGoogle ScholarPubMed
Lambrechts, L.Scott, T.W. 2009. Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proceedings of the Royal Society of Biological Sciences B, 276: 13691378. doi: 10.1098/rspb.2008.1709.CrossRefGoogle ScholarPubMed
Maciel-de-Freitas, R., Koella, J.C., Lourenco-de-Oliveira, R. 2011. Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Transactions of the Royal Society of Tropical Medicine and Hygiene, 105: 452458. doi: 10.1016/j.trstmh.2011.05.006.CrossRefGoogle ScholarPubMed
Mackenzie, J.S., Gubler, D.J., Petersen, L.R. 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine, 10: S98S109. doi:10.1038/nm1144.CrossRefGoogle ScholarPubMed
Miller, B.R.Mitchell, C.J. 1991. Genetic selection of a flavivirus-refractory strain of the yellow-fever mosquito Aedes-aegypti. American Journal of Tropical Medicine and Hygiene, 45: 399407.CrossRefGoogle ScholarPubMed
Ocampo, C.B.Wesson, D.M. 2004. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. American Journal of Tropical Medicine and Hygiene, 71: 506513.CrossRefGoogle ScholarPubMed
Severson, D.W., Mori, A., Zhang, Y., Christensen, B.M. 1994a. Chromosomal mapping of two loci affecting filarial worm susceptibility in Aedes aegypti. Insect Molecular Biology, 3: 6772.CrossRefGoogle ScholarPubMed
Severson, D.W., Mori, A., Zhang, Y., Christensen, B.M. 1994b. The suitability of restriction fragment length polymorphism markers for evaluating genetic diversity among and synteny between mosquito species. American Journal of Tropical Medicine and Hygiene, 50: 425432.CrossRefGoogle ScholarPubMed
Tardieux, I., Poupel, O., Lapchin, L., Rodhain, F. 1991. Analysis of inheritance of oral susceptibility of Aedes aegypti (Diptera, Culicidae) to dengue-2 virus using isofemale lines. Journal of Medical Entomology, 28: 518521.CrossRefGoogle ScholarPubMed
Wallis, G.P., Aitken, T.H.G., Beaty, B.J., Lorenz, L., Amato, G.D., Tabachnick, W.J. 1985. Selection for susceptibility and refractoriness of Aedes aegypti to oral infection with yellow-fever virus. American Journal of Tropical Medicine and Hygiene, 34: 12251231.CrossRefGoogle ScholarPubMed
Woodring, J., Higgs, S., Beaty, B.J. 1996. Natural cycles of vectorborne pathogens. In The biology of disease vectors. Edited by B. Beaty. University of Colorado, Boulder, Colorado, United States of America. pp. 5172.Google Scholar
World Health Organization 2009. Dengue/dengue hemorrhagic fever [online]. World Health Organization, Geneva, Switzerland. Available from http://www.who.int/csr/disease/dengue/en/ [accessed 10 January 2010].Google Scholar