Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:34:53.313Z Has data issue: false hasContentIssue false

Seed damage and sources of yield loss by Sitodiplosis mosellana (Diptera: Cecidomyiidae) in resistant wheat varietal blends relative to susceptible wheat cultivars in western Canada

Published online by Cambridge University Press:  24 April 2014

M.A.H. Smith*
Affiliation:
Agriculture and Agri-Food Canada, Cereal Research Centre, 195 Dafoe Road, Winnipeg, MB, Canada R3T 2M9
I.L. Wise
Affiliation:
Agriculture and Agri-Food Canada, Cereal Research Centre, 195 Dafoe Road, Winnipeg, MB, Canada R3T 2M9
S.L. Fox
Affiliation:
Agriculture and Agri-Food Canada, Cereal Research Centre, 195 Dafoe Road, Winnipeg, MB, Canada R3T 2M9
C.L. Vera
Affiliation:
Agriculture and Agri-Food Canada, Melfort Research Farm, PO Box 1240, Melfort, SK, Canada S0E 1A0
R.M. DePauw
Affiliation:
Agriculture and Agri-Food Canada, Semiarid Prairie Agricultural Research Centre, PO Box 1030, Swift Current, SK, Canada S9H 3X2
O.M. Lukow
Affiliation:
Agriculture and Agri-Food Canada, Cereal Research Centre, 195 Dafoe Road, Winnipeg, MB, Canada R3T 2M9
*
1Corresponding author (e-mail: [email protected]).

Abstract

Spring wheat varieties with the Sm1 gene for resistance to wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), were compared with susceptible wheat (Triticum Linnaeus; Poaceae) with respect to sources of yield loss and reduction in market value from wheat midge feeding damage. Four resistant varietal blends (90% Sm1 wheat plus 10% susceptible refuge) and four susceptible cultivars were grown in replicated experiments at eight locations in western Canada. Frequencies and 1000-kernel weights of undamaged and midge-damaged seeds were assessed before harvest by dissecting samples of ripe spikes, and after harvest in samples of cleaned grain. Spike data were used to estimate yield losses from reduced weight of damaged seeds and loss of severely damaged seeds (⩽8 mg) at harvest. Among midge-damaged seeds in spikes, few were severely damaged in resistant varietal blends, whereas most were severely damaged in susceptible cultivars. Cleaned, harvested grain of resistant varietal blends and susceptible cultivars had similar frequencies of midge damage and were assessed similar market grades. The primary benefit of midge-resistant wheat was reduced yield loss due to seed damage by wheat midge larvae. Resistant wheat did not protect against loss of market grade, but market value could increase due to larger yields.

Résumé

Nous avons comparé des variétés de blé de printemps possédant le gène Sm1 de la résistance à la cécidomyie du blé, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), à du blé (Triticum Linnaeus; Poaceae) vulnérable en ce qui a trait aux sources de perte de rendement et à la réduction de la valeur marchande à cause des dommages causés par l'alimentation de la cécidomyie du blé. Quatre mélanges de variétés résistantes (90% de blé Sm1 plus 10% de blé vulnérable comme refuge) et quatre cultivars vulnérables ont été cultivés lors d'expériences menées en double dans huit sites de l'Ouest canadien. Nous avons évalué les fréquences et les masses de 1000 épis de grains sains et de grains endommagés par les cécidomyies avant la récolte en disséquant des échantillons d’épis mûrs et, après la récolte, en mesurant des échantillons de grains propres. Les données provenant des épis ont servi à estimer les pertes de rendement dues à la masse réduite des grains endommagés et la perte de grains fortement endommagés (⩽8 mg) lors de la récolte. Parmi les grains endommagés dans les épis par les cécidomyies, peu de grains étaient fortement endommagés chez les mélanges de variétés résistantes, alors que la plupart des grains étaient fortement endommagés chez les cultivars vulnérables. Les grains récoltés et nettoyés des mélanges de variétés résistantes et des cultivars susceptibles montraient des fréquences semblables de dommages dus aux cécidomyies et ils ont obtenu des cotes marchandes semblables. L'avantage principal du blé résistant aux cécidomyies est la réduction des pertes de rendement causées par les dommages dus aux larves de cécidomyies du blé. Le blé résistant n'offre pas de protection contre la perte de cote marchande, mais sa valeur marchande peut augmenter à cause de ses rendements plus élevés.

Type
Insect Management
Copyright
Copyright © Her Majesty the Queen in Right of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Gilles Boiteau

References

Coghlan, A. 2013. Save killer crops from super-pests. New Scientist, 218 (2921): 89.Google Scholar
Dexter, J.E., Preston, K.R., Cooke, L.A., Morgan, B.C., Kruger, J.E., Kilborn, R.H., et al. 1987. The influence of orange wheat blossom midge (Sitodiplosis mosellana Géhin) damage on hard red spring wheat quality and the effectiveness of insecticide treatments. Canadian Journal of Plant Science, 67: 697712.Google Scholar
Ding, H., Lamb, R.J., Ames, N. 2000. Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana (Diptera: Cecidomyiidae). Journal of Chemical Ecology, 26: 969985.CrossRefGoogle Scholar
Elliott, R.H. 1988. Evaluation of insecticides for protection of wheat against damage by the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 120: 615626.Google Scholar
Fox, S.L., Lamb, R.J., McKenzie, R.I.H., Wise, I.L., Smith, M.A.H., Humphreys, D.G., et al. 2012. Registration of ‘Fieldstar’ hard red spring wheat. Journal of Plant Registrations, 6: 161168.Google Scholar
Fox, S.L., Thomas, J.B., Wise, I.L., Smith, M.A.H., Humphreys, D.G., Brown, P.D., et al. 2009. Waskada hard red spring wheat. Canadian Journal of Plant Science, 89: 929936.Google Scholar
Gharalari, A.H., Fox, S.L., Smith, M.A.H., Lamb, R.J. 2009. Oviposition deterrence in spring wheat, Triticum aestivum, against orange wheat blossom midge, Sitodiplosis mosellana: implications for inheritance of deterrence. Entomologia Experimentalis et Applicata, 133: 7483.CrossRefGoogle Scholar
Harris, M.O., Stuart, J.J., Mohan, M., Nair, S., Lamb, R.J., Rohfritsch, O. 2003. Grasses and gall midges: plant defense and insect adaptation. Annual Review of Entomology, 48: 549577.CrossRefGoogle ScholarPubMed
Lamb, R.J., Tucker, J.R., Wise, I.L., Smith, M.A.H. 2000. Trophic interaction between Sitodiplosis mosellana (Diptera: Cecidomyiidae) and spring wheat: implications for yield and seed quality. The Canadian Entomologist, 132: 607625.Google Scholar
Lamb, R.J., Wise, I.L., Olfert, O.O., Gavloski, J., Barker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist, 131: 387397.Google Scholar
Lamb, R.J., Wise, I.L., Smith, M.A.H., McKenzie, R.I.H., Thomas, J.Olfert, O.O. 2002. Oviposition deterrence against Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist, 134: 8596.Google Scholar
McKenzie, R.I.H., Lamb, R.J., Aung, T., Wise, I.L., Barker, P., Olfert, O.O. 2002. Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breeding, 121: 383388.Google Scholar
Olfert, O., Elliott, R.H., Hartley, S. 2009. Non-native insects in agriculture: strategies to manage the economic and environmental impact of wheat midge, Sitodiplosis mosellana, in Saskatchewan. Biological Invasions, 11: 127133.Google Scholar
Olfert, O.O., Mukerji, M.K., Doane, D.F. 1985. Relationships between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist, 117: 593598.Google Scholar
Onstad, D.W., Mitchell, P.D., Hurley, T.M., Lundgren, J.G., Porter, R.P., Krupke, C.H., et al. 2011. Seeds of change: corn seed mixtures for resistance management and integrated pest management. Journal of Economic Entomology, 104: 343352.Google Scholar
SAS Institute. 2008. SAS/STAT User's Guide, Version 9.2. Cary, North Carolina, United States of America.Google Scholar
Smith, M.A.H., Lamb, R.J., Wise, I.L., Olfert, O.O. 2004. An interspersed refuge for Sitodiplosis mosellana (Diptera: Cecidomyiidae) and a biocontrol agent Macroglenes penetrans (Hymenoptera: Pteromalidae) to manage crop resistance in wheat. Bulletin of Entomological Research, 94: 179188.Google Scholar
Smith, M.A.H., Wise, I.L., Lamb, RJ. 2007. Survival of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Poaceae) with antibiosis resistance: implication for the evolution of virulence. The Canadian Entomologist, 139: 133140.Google Scholar
Tabashnik, B.E., Gassmann, A.J., Crowder, D.W., Carrière, Y. 2008. Insect resistance to Bt crops: evidence versus theory. Nature Biotechnology, 26: 199202.Google Scholar
Tottman, D.R.Makepeace, R.J. 1979. An explanation of the decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology, 93: 221234.Google Scholar
Vera, C.L., Fox, S.L., DePauw, R.M., Smith, M.A.H., Wise, I.L., Clarke, F.R., et al. 2013. Relative performance of resistant wheat varietal blends and susceptible wheat cultivars exposed to wheat midge, Sitodiplosis mosellana (Géhin). Canadian Journal of Plant Science, 93: 18.Google Scholar