Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T02:12:48.771Z Has data issue: false hasContentIssue false

SEARCHING BEHAVIOUR OF ADULT FEMALE COCCINELLIDAE (COLEOPTERA) ON STEM AND LEAF MODELS

Published online by Cambridge University Press:  31 May 2012

B.D. Frazer
Affiliation:
Agriculture Canada, 6660 NW Marine Drive, Vancouver, British Columbia, Canada V6T 1X2
R.R. McGregor
Affiliation:
Agriculture Canada, 6660 NW Marine Drive, Vancouver, British Columbia, Canada V6T 1X2

Abstract

Behaviour of locally occurring adult females of seven species of coccinellids was assessed on wooden dowel and paper models that mimicked branching patterns and arrangements of leaf attachments to stems. Ambient temperature and hunger of the beetles were controlled. The movements up or down the main branch of the branch models when contacted from a side branch, duration of searching, and method of leaving leaf models were recorded for 20 beetles of each species.Each species responded to the seven models with different frequencies of behaviours that reflected species-specific modifications of the taxes that lead coccinellids to the tops and terminal parts of plants. Some beetles consistently modified the pattern of responses on die models that was displayed by die species as a whole. The individual modifications could be selected for. The differences in frequencies of behaviours were judged to be sufficient to result in differences in the efficiency with which plants with different architectures were searched.

Résumé

Le comportement de femelles adultes de sept espèces locales de Coccinellidae a été étudié sur des modèles faits de chevilles de bois et de papier imitant les ramifications des branches et l’attachement des feuilles à des tiges. La température ambiante et la faim des insectes étaient contrôlées. Les déplacements vers le haut ou vers le bas sur la branche principale des modèles à partir d’une branche latérale, de même que la durée de la recherche et la façon de quitter les modèles à feuilles ont été notés chez 20 individus de chaque espèce.Face aux sept modèles, les espèces ont réagi selon des fréquences particulières de comportements qui reflétaient les modifications spécifiques à chaque espèce des tendances qui déterminent les Coccinellidae à se déplacer vers le haut et vers les parties terminales des plantes. Sur les modèles, certains individus avaient des comportements toujours un peu différents de ceux manifestés par l’espèce dans son ensemble. La sélection peut agir sur ces modifications individuelles. Les différences dans la fréquence des comportements ont été jugées suffisamment grandes pour modifier l’efficacité avec laquelle des plantes d’architectures différentes sont explorées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter, M.C., Sutherland, D., and Dixon, A.F.G.. 1984. Plant structure and the searching efficiency of coccinellid larvae. Oecologia 63: 394397.CrossRefGoogle ScholarPubMed
Dicker, G.H.L. 1952. Studies in population fluctuations of the strawberry aphid, Pentatrichopus fragaefolii (Cock.). 1. Enemies of the strawberry aphid. Annual Report of the East Malling Research Station for 1951 39: 166168.Google Scholar
Dixon, A.F.G. 1959. An experimental study of the searching behaviour of the predatory coccinellid beetle Adalia decempunctata (L.). Journal of Animal Ecology 28: 259281.CrossRefGoogle Scholar
Forbes, A.R., Frazer, B.D., and Chan, C.K.. 1985. Aphids. pp. 353–359 in Singh, P., and Moore, R.F. (Eds.), Handbook of Insect Rearing, Vol. 1. Elsevier Science Publishers B.V., Amsterdam. 488 pp.Google Scholar
Frazer, B.D. 1988. Coccinellidae. Chap. 9.2.1. pp. 231–247 in Minks, A.K., and Harrewijn, P. (Eds.), Aphids, their Biology, Natural Enemies and Control, Vol. B. Elsevier Science Publishers B.V., Amsterdam. 364 pp.Google Scholar
Frazer, B.D., and Gilbert, N.. 1976. Coccinellids and aphids: A quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). Journal of the Entomological Society of British Columbia 73: 356.Google Scholar
Gilbert, N. 1973. Biometrical Interpretation. Clarendon Press, Oxford. 125 pp.Google Scholar
Gordon, R.D. 1985. The Coccinellidae (Coleoptera) of America North of Mexico. Journal of the New York Entomological Society 90: 1912.Google Scholar
Hodek, I. 1973. Biology of Coccinellidae. Dr. W. Junk N.V. Publishers, The Hague, Holland. 260 pp.CrossRefGoogle Scholar
Honěk, A. 1985. Habitat preferences of aphidophagous Coccinellids [Coleoptera]. Entomophaga 30: 253264.CrossRefGoogle Scholar
Honěk, A., and Kocourek, F.. 1988. Thermal requirements for development of aphidophagous Coccinellidae (Coleoptera), Chrysopidae, Hemerobiidae (Neuroptera), and Syrphidae (Diptera): Some general trends. Oecologia 76: 455460.CrossRefGoogle Scholar
Ives, P.M. 1981. Estimation of coccinellid numbers and movement in the field. The Canadian Entomologist 113: 981997.CrossRefGoogle Scholar
Juniper, B.E., and Southwood, T.R.R. (Eds.). 1986. Insects and Plant Surfaces. Edward Arnold Ltd., London. 360 pp.Google Scholar
Kareiva, P., and Sahakian, R.. 1990. Tritrophic effects of simple architectural mutation in pea plants. Nature 345: 433434.CrossRefGoogle Scholar
Williams, E.J. 1949. Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Scientific Research 2: 149168.Google Scholar