Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T19:42:20.838Z Has data issue: false hasContentIssue false

SAMPLING CARABID ASSEMBLAGES WITH PITFALL TRAPS: THE MADNESS AND THE METHOD

Published online by Cambridge University Press:  31 May 2012

John R. Spence
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
Jari K. Niemelä
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

Abstract

We describe a litter-washing technique for collecting quantitative samples of ground-beetles (Carabidae), and compare the results with those from liner extraction by Tullgren funnels and pitfall (rapping. We also compare performance of four types of pitfall traps across five habitats. Carabid species composition from litter washing and funnel extraction was similar but washing revealed higher densities. Large-bodied species predominated in pitfall samples and small-bodied species predominated in litter samples. Uncovered, round pitfall traps yielded generally higher catches than rectangular or covered, round traps but the pattern was not consistent over all species or the five habitats. Ecological studies of carabid populations and assemblages using pitfall traps may be improved if they are both designed and interpreted in light of the biology of the group and with regard to the deficiencies of pitfall trapping as discussed here and elsewhere.

Résumé

Nous décrivons ici une méthode quantitative de récolte des carabes (Carabidae) par lavage de la litière et comparons les résultats avec ceux obtenus par extraction au moyen d’entonnoirs Tullgren ou ceux obtenus dans des pièges à fosses. Nous comparons également la performance de quatre types de pièges à fosses en cinq habitats. La composition en espèces de carabes obtenue par lavage de la litière ou celle obtenue par extraction au moyen d’un entonnoir sont semblables, mais le lavage permet d’obtenir des densités plus fortes. Les espèces à corps de grande taille prédominent dans les échantillons récoltés dans les pièges à fosses, alors que les petites espèces dominent dans les échantillons récoltés dans la litière. Les pièges à fosses ronds, découverts, permettent généralement des récoltes plus importantes que les pièges rectangulaires ou les pièges ronds couverts, mais ce n’est pas toujours le cas pour toutes les espèces ou dans les cinq habitats. Les études écologiques des populations et associations de carabes au moyen de pièges à fosses peuvent être raffinées si elles sont conçues et interprétées à la lumière de la biologie du groupe en tenant compte des faiblesses des pièges à fosses telles qu’elles sont décrites ici et dans d’autres articles.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adis, J. 1979. Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger 202: 177184.Google Scholar
Allen, A.A. 1957. The habit of aggregation in Agonum dorsale Pont. (Col., Carabidae). Entomologist's Monthly Magazine 210: 142.Google Scholar
Baars, M.A. 1979. Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia (Berlin) 41: 2546.CrossRefGoogle ScholarPubMed
Barber, H.S. 1931. Traps for cave-inhabiting insects. Journal of Elisha Mitchell Science Society 46: 259266.Google Scholar
Biström, O., and Halme, E.. 1988. Coleoptera and Heteroptera in a silviculturally managed coniferous forest at Kirkkonummi (southern Finland). Notulae Entomologicae 68: 3347.Google Scholar
Bostanian, G., Boivin, G., and Goulet, H.. 1983. Ramp pitfall trap. Journal of Economic Entomology 76: 14731475.CrossRefGoogle Scholar
Bousquet, Y. 1986. Number of clip setae on the protibia as a diagnostic character between P. pensylvanicus LeConte and P. adstrictus Eschscholtz (Coleoptera: Carabidae). The Coleopterists Bulletin 40: 353354.Google Scholar
Briggs, J.B. 1960. A comparison of pitfall trapping and soil sampling in assessing populations of two species of ground beetles (Col.: Carabidae). East Malling Research Station Annual Report 48: 108112.Google Scholar
Burgess, A.F., and Collins, C.W.. 1917. The Genus Calosoma including Studies of Seasonal Histories, Habits and Economic Importance of American Species North of Mexico and of Several Introduced Species. United States Department of Agriculture Bulletin 417: 124 pp.Google Scholar
Carter, A. 1976. Wing polymorphism in the insect species Agonum retractum Leconte (Coleoptera: Carabidae). Canadian Journal of Zoology 54: 13751382.CrossRefGoogle Scholar
Crins, W.J. 1980. Two aggregations of Calosoma frigidum (Coleoptera: Carabidae) in Ontario during 1976. Entomological News 91: 155158.Google Scholar
den Boer, P.J. 1981. On the survival of populations in a heterogeneous and variable environment. Oecologia (Berlin) 50: 3953.Google Scholar
den Boer, P.J. 1986. Carabids as objects of study. pp. 539–551 in den Boer, P.J., Luff, M.L., Mossakowski, D., and Weber, F. (Eds.), Carabid Beetles, their Adaptations and Dynamics. Gustav Fischer, Stuttgart. 551 pp.Google Scholar
Desender, K., and Maelfait, J.-P.. 1986. Pitfall trapping within enclosures: A method for estimating the relationship between the abundances of coexisting carabid species (Coleoptera: Carabidae). Holarctic Ecology 9: 245250.Google Scholar
Ericson, D. 1979. The interpretation of pitfall catches of Pterostichus cupreus and Pt. melanarius (Coleoptera, Carabidae) in cereal fields. Pedobiologia 19: 320328.CrossRefGoogle Scholar
Evans, M.E.G. 1986. Carabid locomotor habits and adaptations. pp. 59–77 in den Boer, P.J., Luff, M.L., Mossakowski, D., and Weber, F. (Eds.), Carabid Beetles, their Adaptations and Dynamics. Gustav Fischer, Stuttgart. 551 pp.Google Scholar
Evans, M.E.G. 1990. Habits or habitats: Do carabid locomotor adaptations reflect habitats or lifestyles? pp. 295–305 in Stork, N.E. (Ed.), The Role of Ground Beetles in Ecological and Environmental Studies. Intercept, Andover, NH. 424 pp.Google Scholar
Franke, U., Friebe, B., and Beck, L.. 1988. Methodisches zur Ermittlung der Siedlungsdichte von Bodentiere aus Quadratproben und Barberfallen. Pedobiologia 32: 253264.CrossRefGoogle Scholar
Freitag, R., Hastings, L., Mercer, W.R., and Smith, A.. 1973. Ground beetle populations near a kraft mill. The Canadian Entomologist 105: 299310.CrossRefGoogle Scholar
Gist, C.S., and Crossley, D.A.. 1973. A method for quantifying pitfall trapping. Environmental Entomology 2: 951952.CrossRefGoogle Scholar
Greene, A. 1975. Biology of the five species of Cychrini (Coleoptera: Carabidae) in the steppe region of southeastern Washington. Melanderia 19: 143.Google Scholar
Greenslade, P.J.M. 1964. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). Journal of Animal Ecology 33: 301310.CrossRefGoogle Scholar
Halsall, N.B., and Wratten, S.D.. 1988. The efficiency of pitfall trapping for polyphagous predatory Carabidae. Ecological Entomology 13: 293299.CrossRefGoogle Scholar
Hengeveld, R. 1981. The evolutionary relevance of feeding habits of ground beetles (Coleoptera: Carabidae). Entomologica Scandinavica Supplementum 15: 305315.Google Scholar
Hertz, M. 1927. Huomioita petokuoriaisten olinpaikoista. Luonnon Ystävä 31: 218222.Google Scholar
Honêk, A. 1988. The effect of crop density and microclimate on pitfall trap catches of Carabidae, Staphylinidae (Coleoptera) and Lycosidae (Araneae) in cereal fields. Pedobiologia 32: 233242.CrossRefGoogle Scholar
Kharboutli, M.S., and Mack, T.P.. 1991. Relative and seasonal abundance of predaceous arthropods in Alabama peanut fields as indexed by pitfall traps. Journal of Economic Entomology 84: 10151023.CrossRefGoogle Scholar
Kowalski, R. 1975. Obtaining valid population indicies from pitfall trapping data. Bulletin de l'Academie Polonaise des Sciences 23: 799803.Google Scholar
Lindroth, C.H. 1961. The ground-beetles (Carabidae excl. Cicindelinae) of Canada and Alaska. Part 2. Opuscula Entomologica Supplementum 20: 1200.Google Scholar
Lindroth, C.H. 1963. The ground-beetles (Carabidae excl. Cicindelinae) of Canada and Alaska. Part 3. Opuscula Entomologica Supplementum 24: 201408.Google Scholar
Lindroth, C.H. 1966. The ground-beetles (Carabidae excl. Cicindelinae) of Canada and Alaska. Part 4. Opuscula Entomologica Supplementum 29: 409648.Google Scholar
Lindroth, C.H. 1968. The ground-beetles (Carabidae excl. Cicindelinae) of Canada and Alaska. Part 5. Opuscula Entomologica Supplementum 33: 649944.Google Scholar
Lindroth, C.H. 1969. The ground-beetles (Carabidae excl. Cicindelinae) of Canada and Alaska. Part 6. Opuscula Entomologica Supplementum 34: 9451192.Google Scholar
Ludwig, J.A., and Reynolds, J.F.. 1988. Statistical Ecology. A Primer on Methods and Computing. John Wiley, New York, NY. 337 pp.Google Scholar
Luff, M.L. 1975. Some features influencing the efficiency of pitfall traps. Oecologia (Berlin) 19: 345357.Google Scholar
Luff, M.L. 1982. Population dynamics of Carabidae. Annals of Applied Biology 101: 164170.Google Scholar
Luff, M.L. 1986. Aggregation of some Carabidae in pitfall traps. pp. 385–397 in den Boer, P.J., Luff, M.L., Mossakowski, D., and Weber, F. (Eds.), Carabid Beetles, their Adaptations and Dynamics. Gustav Fischer, Stuttgart. 551 pp.Google Scholar
Mitchell, B. 1963. Ecology of two carabid beetles, Bembidion lampros (Herbst) and Trechus quadristriatus (Schrank). II. Studies on populations of adults in the field, with species reference to the technique of pitfall trapping. Journal of Animal Ecology 32: 377392.CrossRefGoogle Scholar
Müller, J.K. 1984. Die Bedeutung der Fallenfang-Methode für die Lösung ökologischer Fragestellungen. Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Geographie der Tiere 111: 281305.Google Scholar
Nelemans, M.N.E., den Boer, P.J., and Spee, A.. 1989. Recruitment and summer diapause in the dynamics of a population of Nebria brevicollis (Coleoptera: Carabidae). Oikos 56: 157169.CrossRefGoogle Scholar
Niemelä, J., Haila, Y., Halme, E., Lahti, T., Pajunen, T., and Punttila, P.. 1988. The distribution of carabid beetles in fragments of old coniferous taiga and adjacent managed forest. Annales Zoologici Fennici 25: 107119.Google Scholar
Niemelä, J., Halme, E., and Haila, Y.. 1990. Balancing sampling effort in pitfall trapping of carabid beetles. Entomologica Fennica 1: 233238.CrossRefGoogle Scholar
Niemelä, J., Halme, E., Pajunen, T., and Haila, Y.. 1986. Sampling spiders and carabid beetles with pitfall traps: The effect of increased sampling effort. Annales Entomologici Fennici 52: 109111.Google Scholar
Niemelä, J., Langor, D.W., and Spence, J.R.. 1993. Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in western Canada. Conservation Biology 7: 551561.CrossRefGoogle Scholar
Niemelä, J., Spence, J.R., and Spence, D.H.. 1992. Habitat associations and seasonal activity of ground-beetles (Coleoptera, Carabidae) in central Alberta. The Canadian Entomologist 124: 521540.CrossRefGoogle Scholar
Obrtel, R. 1971. Number of pitfall traps in relation to the structure of the catch of soil surface Coleoptera. Acta Entomologica Bohemoslovaca 68: 300309.Google Scholar
Thiele, H.-U. 1977. Carabid Beetles in their Environments. Springer Verlag, Berlin. 369 pp.CrossRefGoogle Scholar
Topping, C.J., and Sunderland, K.D.. 1992. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. Journal of Applied Ecology 29: 485491.CrossRefGoogle Scholar
Tretzel, E. 1955. Technik und Bedeutung des Fallenfanges für ökologische Untersuchungen. Zoologischer Anzeiger 155: 276287.Google Scholar
Wagge, B.E. 1985. Trapping efficiency of carabid beetles in glass and plastic pitfall traps containing different solutions. Fauna Norvegicum, Series B 32: 3336.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd edition. Prentice-Hall International, Englewood Cliffs, NJ. 718 pp.Google Scholar