Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T10:54:19.372Z Has data issue: false hasContentIssue false

Rove beetles (Coleoptera: Staphylinidae) in northern Nearctic forests1

Published online by Cambridge University Press:  02 April 2012

Greg Pohl*
Affiliation:
Canadian Forest Service, Natural Resources Canada, 5320 – 122 Street, Edmonton, Alberta, Canada T6H 3S5
David Langor
Affiliation:
Canadian Forest Service, Natural Resources Canada, 5320 – 122 Street, Edmonton, Alberta, Canada T6H 3S5
Jan Klimaszewski
Affiliation:
Canadian Forest Service, Natural Resources Canada, 1055, rue du P.E.P.S., C.P. 3800, Sainte-Foy, Quebec, Canada G1V 4C7
Timothy Work
Affiliation:
Departement des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre Ville, Montréal, Quebec, Canada H3P 3P8
Pierre Paquin
Affiliation:
Department of Biology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, United States of America
*
2Corresponding author (e-mail: [email protected]).

Abstract

Rove beetles are useful subjects for Nearctic forest biodiversity work because they are abundant, diverse, and easily collected, and have strong habitat affinities. Excellent identification keys exist for most groups, although there is a dearth of ecological and life-history information. There is considerable variation in species composition and abundance within the active summer season and in abundance from year to year. Community composition varies among larger geographical regions and to a lesser extent among forest types in more localized areas. Within the Nearctic boreal forest there are significant differences between beetle communities from the eastern and western portions. For the most part, the same species tend to dominate rove beetle communities in the western boreal forest. At the landscape level there are differences in rove beetle communities along successional gradients. In the boreal forest the communities of younger aspen-dominated and older conifer-dominated stands are somewhat distinct, with intermediate-aged stands containing a mix of the two communities. At the ecosite and microsite level there is significant variation, which remains poorly understood. Fire is the dominant mode of disturbance in the Nearctic boreal forest. It has a profound effect on rove beetles by destroying the forest communities and resetting the successional trajectory to the earliest stages. The burn pattern results in a patchwork of different communities at various stages in the successional cycle. In contrast to fire, forest harvesting does not directly destroy the rove beetle community, but to a large extent it destroys the forest habitat. This results in a unique rove beetle community characterized by a mix of forest species and open-ground specialists, and overall high diversity in this period of flux. In the years after harvesting, the rove beetle community goes through successional changes and becomes more similar to the forest community, but it skips the early postfire stage and proceeds along the successional trajectory more rapidly than after fire. In at least one forest type in western Canada, the post-fire and post-harvest communities, though similar, have not converged after 29 years. Other less direct effects of harvesting on rove beetles are a decrease in the proportion of the land base suitable for communities associated with older successional stages; alteration of forests by post-harvest site preparations and planting of exotic tree species; edge and fragmentation effects that are detrimental to the remaining forest surrounding harvested areas; and an influx of exotic arthropod species with affinities for disturbed sites. More information is needed on the habitat affinities of individual species. It is recommended that future work explore the effects of post-harvest forestry activities, fragmentation, and edges on rove beetles in forested habitats. As well, such studies should consider the effects on beetles of riparian zones and wetlands.

Résumé

Les staphylins constituent un matériel intéressant pour l’étude de la biodiversité forestière dans la région néarctique parce qu’ils sont abondants, diversifiés et faciles à récolter et qu’ils ont de fortes affinités avec leur habitat. Il existe d’excellentes clés d’identification pour la plupart des groupes, bien qu’il y ait une pénurie de renseignements sur leur écologie et leurs cycles biologiques. Il se produit une importante variation de composition et d’abondance spécifiques durant la partie active de l’été et leur abondance change aussi d’année en année. La composition des communautés diffère dans les grandes régions géographiques et, à un moindre degré, dans les divers types forestiers dans les régions plus restreintes. Dans la forêt boréale néarctique, il y a des différences significatives entre les communautés de coléoptères des régions orientale et occidentale. En général, les mêmes espèces ont tendance à prédominer dans les communautés de staphylins dans la forêt boréale de l’ouest. À l’échelle du paysage, il y a des différences dans les communautés de staphylins le long des gradients de la succession écologique. Dans la forêt boréale, les communautés des peuplements plus jeunes dominés par les trembles et des peuplements plus vieux dominés par les conifères sont quelque peu distinctes et les peuplements intermédiaires contiennent un mélange des deux communautés. À l’échelle de l’écosite et du microsite, il existe une importante variation qui reste mal comprise. Le feu est le mode de perturbation dominant dans la forêt boréale néarctique. Il a un effet considérable sur les staphylins en détruisant les communautés forestières et en faisant rétrograder la trajectoire de la succession vers ses premiers stades. Le scénario du feu produit une mosaïque de communautés différentes rendues à divers stades de la succession. Contrairement au feu, la coupe forestière ne détruit pas directement la communauté de staphylins, mais elle élimine en grande partie l’habitat forestier. Cela fait apparaître une communauté particulière de staphylins, caractérisée par un mélange d’espèces forestières et de spécialistes des milieux ouverts et par une diversité globale élevée, pendant cette période de fluctuations. Dans les années qui suivent la coupe, la communauté de staphylins subit des changements associés à la succession et devient de plus en plus semblable à la communauté des forêts; elle passe, cependant, par-dessus le stade initial d’après feu et poursuit sa trajectoire de succession plus rapidement qu’après un incendie de forêt. Dans au moins un type de forêt dans l’Ouest canadien, la communauté d’après feu et celle d’après coupe, bien que semblables, n’ont pas encore convergé au bout de 29 ans. Les autres effets moins directs de la coupe sur les communautés de staphylins incluent une diminution de la proportion des terres adéquates pour les communautés associées aux stades plus avancés de la succession, une modification des forêts à cause de la préparation des sites après la coupe et l’implantation d’espèces exotiques d’arbres, des effets de bordure et de fragmentation qui sont nocifs à la forêt restante autour des sites coupés, ainsi qu’un apport d’espèces exotiques d’arthropodes ayant une affinité pour les milieux perturbés. Il est essentiel d’obtenir plus de renseignements sur les affinités d’habitat des différentes espèces. Nous recommandons que les études futures examinent les effets des activités forestières d’après coupe, de la fragmentation et des bordures sur les staphylins dans les régions forestières. De plus, il faudrait explorer les effets des zones riveraines et des terres humides sur les staphylins.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atlas of Canada. 2005. Forest regions of Canada [online]. Available at http://atlas.gc.ca/site/english/maps/archives/3rdedition/environment/ecology/039 [accessed September 2005].Google Scholar
Bellocq, M.I., Smith, S.M., and Doka, M.E. 2001. Short-term effects of harvest technique and mechanical site preparation on arthropod communities in jack pine plantations. Journal of Insect Conservation, 5: 187196.CrossRefGoogle Scholar
Bousquet, Y. 1989. Checklist of beetles of Canada and Alaska. Publication 1861/E, Agriculture Canada Research Branch, Ottawa, Ontario.Google Scholar
Bray, J.R., and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27: 325349.CrossRefGoogle Scholar
Brzustowski, J. 1999. Statistical programs [online]. Available at http://gause.biology.ualberta.ca/jbrzusto/ [accessed February 2006].Google Scholar
Buddle, C.M., Spence, J.R., and Langor, D.W. 2000. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography, 23: 424436.CrossRefGoogle Scholar
Buddle, C.M., Beguin, J., Bolduc, E., Mercado, A., Sackett, T.E., Selby, R.D., Varady-Szabo, H., and Zeran, R.M. 2005. The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. The Canadian Entomologist, 137: 120127.CrossRefGoogle Scholar
Buddle, C.M., Langor, D.W., Pohl, G.R., and Spence, J.R. 2006. Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biological Conservation, 128: 346357.CrossRefGoogle Scholar
Buse, A., and Good, J.E.D. 1993. The effects of conifer forest design and management on abundance and diversity of rove beetles (Coleoptera: Staphylinidae): implications for conservation. Biological Conservation, 64: 6776.CrossRefGoogle Scholar
Campbell, J.M., and Davies, A. 1989. Staphylinidae. In Checklist of beetles of Canada and Alaska. Edited by Bousquet, Y.. Publication No. 1861, Agriculture Canada, Ottawa, Canada. pp. 86124.Google Scholar
Campbell, J.M., and Winchester, N.N. 1993. First record of Pseudohaida rothi Hatch (Coleoptera: Staphylinidae: Omaliinae) from Canada. Journal of the Entomological Society of British Columbia, 90: 83.Google Scholar
Chandler, D.S. 1987. Species richness and abundance of Pselaphidae (Coleoptera) in old-growth and 40-year-old forests in New Hampshire. Canadian Journal of Zoology, 65: 608615.CrossRefGoogle Scholar
Chandler, D.S., and Paquin, P. 2004. A new species of the genus Actium (Coleoptera: Staphylinidae: Pselaphinae) from boreal old-growth forests of Quebec, Canada. The Canadian Entomologist, 136: 753757.CrossRefGoogle Scholar
Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2005. Canadian species at risk (August 2005). Committee on the Status of Endangered Wildlife in Canada, Ottawa, Ontario.Google Scholar
Gandhi, K.J.K., Spence, J.R., Langor, D.W., and Morgantini, L.E. 2001. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Biological Conservation, 102: 131141.CrossRefGoogle Scholar
Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391.CrossRefGoogle Scholar
Grimaldi, D., and Engel, M.S. 2005. Evolution of the insects. Cambridge University Press, New York.Google Scholar
Hanley, R.S., and Goodrich, M.A. 1995. Review of mycophagy, host relationships and behavior in the New World Oxyporinae (Coleoptera: Staphylinidae). Coleopterists Bulletin, 49: 267280.Google Scholar
Herman, L.H. Jr., 1986. Revision of Bledius. Part IV. Classification of species groups, phylogeny, natural history, and catalogue (Coleoptera, Staphylinidae, Oxytelinae). Bulletin of the American Museum of Natural History, 184: 1367.Google Scholar
Herman, L.H. 2001. Catalog of the Staphylinidae (Insecta: Coleoptera): 1758 to the end of the second millenium (7 volumes).Google Scholar
Hunter, M.L. 1993. Natural fire regimes as spatial models for managing boreal forests. Biological Conservation, 65: 115120.CrossRefGoogle Scholar
Klimaszewski, J. 1984. A revision of the genus Aleochara Gravenhorst of America north of Mexico (Coleoptera: Staphylinidae, Aleocharinae). Memoirs of the Entomological Society of Canada No. 129.Google Scholar
Klimaszewski, J. 2000. Diversity of rove beetles in Canada and Alaska (Coleoptera: Staphylinidae). Memoires de la Societe royal belge d'Entomologie, 39: 1126.Google Scholar
Klimaszewski, J., and Winchester, N.N. 2002. Aleocharine rove beetles (Coleoptera: Staphylinidae) of the ancient Sitka spruce forest on Vancouver Island, British Columbia, Canada. Memoires de la Societe royal belge d'Entomologie, 40: 1126.Google Scholar
Klimaszewski, J., Maus, C., and Gardiner, A. 2002. The importance of tracking introduced species: new records of athetine rove beetles from South Atlantic Inaccessible Island (Coleoptera, Staphylinidae, Aleocharinae). The Coleopterists Bulletin, 56: 481490.CrossRefGoogle Scholar
Klimaszewski, J., Bernier-Cardou, M., and Germain, C. 2003. The effects of forestry practices on the abundance of arthropods (Acarina, Araneae, Collembola, Coleoptera and Diptera). Belgian Journal of Entomology, 5: 103116.Google Scholar
Klimaszewski, J., Langor, D.W., Work, T.T., Pelletier, G., Hammond, H.E.J., and Germain, C. 2005 a. The effects of patch harvesting and site preparation on ground beetles (Coleoptera: Carabidae) in yellow birch dominated forests of southeastern Quebec. Canadian Journal of Forest Research, 35: 26162628.CrossRefGoogle Scholar
Klimaszewski, J., Sweeney, J., Price, J., and Pelletier, G. 2005 b. Rove beetles (Coleoptera: Staphylinidae) in red spruce stands, eastern Canada: diversity, abundance, and descriptions of species. The Canadian Entomologist, 137: 148.CrossRefGoogle Scholar
Klimaszewski, J., Pelletier, G., Germain, C., Work, T., and Hébert, C. 2006. Review of Oxypoda species in Canada and Alaska (Coleoptera, Staphylinidae, Aleocharinae): systematics, bionomics, and distribution. The Canadian Entomologist, 138: 737852.CrossRefGoogle Scholar
Klimaszewski, J., Langor, D., Savard, K., Pelletier, G., Chandler, D.S., Sweeney, J. 2007. Rove beetles (Coleoptera: Staphylinidae) in yellow birch-dominated stands of southeastern Quebec, Canada: diversity, abundance, and description of a new species. The Canadian Entomologist, 139: 739833.CrossRefGoogle Scholar
Leschen, R.A.B. 1993. Evolutionary patterns of feeding in selected Staphylinidae (Coleoptera): shifts among food texture. In Functional morphology of insect feeding. Edited by Schaefer, C.W. and Leschen, R.A.B.. Thomas Say Publications in Entomology, Entomological Society of America, Lanham, Maryland. pp. 59104.Google Scholar
Levesque, C., and Levesque, G.-Y. 1984. Activité et succession saisonnière de coleoptères epigés d'une forêt decidué du sud du Québec. Le Naturaliste Canadien, 113: 3946.Google Scholar
Levesque, C., and Levesque, G.-Y. 1986. Abondance relative et activité saisonnière de Leiodidae et Staphylinidae (Coleoptera, Staphylinoidea) du biotopes forestiers decidus des Laurentides (Québec). Le Naturaliste Canadien, 111: 229233.Google Scholar
Majka, C., and Klimaszewski, J. 2004. Phloeocharis subtilissima Mannerheim (Staphylinidae: Phloeocharinae) and Cephenium gallicum Ganglabauer (Scydmaenidae) new to North America: a case study in the introduction of exotic Coleoptera to the port of Halifax, with new records of other species. Zootaxa, 781: 115.CrossRefGoogle Scholar
Martin, J.L. 1965. The insect ecology of red pine plantations in central Ontario. III. Soil-surface fauna as indicators of stand change. Proceedings of the Entomological Society of Ontario, 95: 87102.Google Scholar
Matlack, G.R. 1993. Microenvironment variation within and among forest edge sites in the eastern United States. Biological Conservation, 66: 185194.CrossRefGoogle Scholar
Maus, C., Mittmann, B., and Peschke, K. 1998. Host records of parasitoid Aleochara species (Coleoptera, Staphylinidae) attacking puparia of cyclorrhapheous Diptera. Mittellungen aus dem Zoologischen Museum Berlin, deutsche entomologische Zeitschrift, 45: 231254.Google Scholar
McRae, J.B., Duchesne, L.C., Freedman, B., Lynham, T.J., and Woodley, S. 2001. Comparisons between wildfire and forest harvesting and their implications in forest management. Environmental Reviews, 9: 223260.CrossRefGoogle Scholar
Natural Resources Canada. 2003. Canadian Conservation Areas database [online]. Available at http://geogratis.cgdi.gc.ca/ccea/ccea_e.html [accessed January 2006].Google Scholar
Newton, A.F., Thayer, M.K., Ashe, J.S., and Chandler, D.S. 2001. Staphylinidae Latreille, 1802. Chap. 22. In American beetles. Vol. 1. Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia. Edited by Arnett, R.H. Jr., and Thomas, M.C.. CRC Press, Boca Raton, Florida. pp. 272418.Google Scholar
Niemelä, J., Langor, D.W., and Spence, J.R. 1993 a. Effects of clear-cut harvesting on boreal ground beetle assemblages (Coleoptera: Carabidae) in western Canada. Conservation Biology, 7: 551561.CrossRefGoogle Scholar
Niemelä, J., Spence, J.R., Langor, D.W., Haila, Y., and Tukia, H. 1993 b. Logging and boreal ground-beetle assemblages on two continents: implications for conservation. In Perspectives in insect conservation. Edited by Gaston, K.J., New, T.R., and Samways, M.J.. Intercept Publishers Ltd., Andover, United Kingdom. pp. 2950.Google Scholar
Paquin, P., and Coderre, D. 1997. Deforestation and fire impact on edaphic insect larvae and other macroarthropods. Environmental Entomology, 26: 2130.CrossRefGoogle Scholar
Paquin, P., and Dupérré, N. 2001. Beetles of the bo-real forest: a faunistic survey carried out in western Québec. Proceedings of the Entomological Society of Ontario, 132: 5798.Google Scholar
Pohl, G.R., Langor, D.W., and Spence, J.R. 2007. Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biological Conservation, 137: 294307.CrossRefGoogle Scholar
Poole, R.W., and Gentili, P. 1996. Nomina Insecta Nearctica. Vol. 1. Coleoptera, Strepsiptera. Entomological Information Services, Rockville, Maryland.Google Scholar
Rowe, J.S. 1977. Forest regions of Canada. Canadian Forest Service, Ottawa, Ontario.Google Scholar
Scudder, G.G. 1994. An annotated systematic list of the potentially rare and endangered freshwater and terrestrial invertebrates in British Columbia. Entomological Society of British Columbia Occasional Paper 2.CrossRefGoogle Scholar
Seevers, C.H. 1978. A generic and tribal revision of the North American Aleocharinae (Coleoptera: Staphylinidae). Fieldiana Zoology, 71: 1289.Google Scholar
Simberloff, D. 1978. Use of rarefaction and related methods in ecology. In Ecological diversity: theory and practice. Edited by Grassle, F. and Patil, G.P.. International Cooperative Publishing House, Fairland, Maryland. pp. 159170.Google Scholar
Simberloff, D. 1999. The role of science in the preservation of forest biodiversity. Forest Ecology and Management, 115: 101111.CrossRefGoogle Scholar
Spence, J.R., and Niemelä, J. 1994. Sampling carabid assemblages with pitfall traps: the method and the madness. The Canadian Entomologist, 126: 881894.CrossRefGoogle Scholar
Spence, J.R., Langor, D.W., Niemelä, J., Carcamo, H.A., and Currie, C.R. 1996. Northern forestry and carabids: the case for concern about old-growth species. Annales Zoologici Fennici, 33: 173184.Google Scholar
Spence, J.R., Langor, D.W., Hammond, H.E.J., and Pohl, G.R. 1997. Beetle abundance and diversity in a boreal mixedwood forest. In Forests and Insects: Proceedings of the 18th Royal Entomological Society Symposium, 13–15 September 1995. Edited by Watt, A.D. and Stork, N.E.. Chapman and Hall, London. pp. 285299.Google Scholar
Szujecki, A. 1971. Influence of clear cutting upon the community of leaf litter Staphylinidae of fresh pine forest. Folia Forestalia Polinica Seria A, 18: 545.Google Scholar
Szujecki, A. 1975. Impact of clearcutting on the soil entomofauna. In Proceedings of the Seventh World Forestry Congress, Bueno Aires, Argentina, 4–18 October 1972. Edited by Takacs, E.A. and Castiglioni, J.A.. Documentation and Proceedings Committee of the Seventh World Forestry Congress, Buenos Aires, Argentina. pp. 43054309.Google Scholar
Von der Gönna, M.A. 1992. Fundamentals of mechanical site preparation. FRDA Report 178 (Forestry Canada and British Columbia Ministry of Forests joint publication), Victoria, British Columbia.Google Scholar
Wagner, T.L., Mattson, W.J., and Witter, J.A. 1977. A survey of soil invertebrates in two aspen forests in northern Minnesota. General Technical Report NC-40, USDA Forest Service, North Central Forest Experiment Station, St. Paul, Minnesota.Google Scholar
Winchester, N.N. 1997. Arthropods of coastal old-growth Sitka spruce forests: conservation of biodiversity with special reference to the Staphylinidae. In Forests and Insects: Proceedings of the 18th Royal Entomological Society Symposium, London, 13–15 September 1995. Edited by Watt, A.D., Stork, N.E., and Hunter, M.D.. Chapman and Hall, London. pp. 365379.Google Scholar
Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia, 50: 296302.CrossRefGoogle ScholarPubMed
Work, T.T., Shorthouse, D.P., Spence, J.R., Volney, W.J.A., and Langor, D.W. 2004. Stand composition and structure of the boreal mixedwood and epigaeic arthropods of the Ecosystem Management Emulating Natural Disturbance (EMEND) landbase in northwestern Alberta. The Canadian Journal of Forest Research, 34: 417430.CrossRefGoogle Scholar