Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:38:12.086Z Has data issue: false hasContentIssue false

ROLE OF 2,4-DIHYDROXY-7-METHOXY-1,4-BENZOXAZIN-3-ONE (DIMBOA) IN THE RESISTANCE OF MAIZE TO WESTERN CORN ROOTWORM, DIABROTICA VIRGIFERA VIRGIFERA (LECONTE) (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

Y.S. Xie
Affiliation:
Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J.T. Arnason*
Affiliation:
Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
B.J.R. Philogène
Affiliation:
Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J.D.H. Lambert
Affiliation:
Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J. Atkinson
Affiliation:
Ottawa-Carleton Institute of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
P. Morand
Affiliation:
Ottawa-Carleton Institute of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
*
1 Author to whom correspondence should be addressed.

Abstract

2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), the major hydroxamic acid present in corn root, was studied for its effects on western corn rootworm, Diabrotica virgifera virgifera (LeConte). Exogenously applied DIMBOA caused mortality in western corn rootworm larvae feeding on fresh corn roots. The LC50 (lethal concentration for 50% mortality) value (fiducial limits) was 153 ppm (108–209) and the LC90 value was 917 ppm (560–2297). The deleterious effects of DIMBOA on western corn rootworm larvae possibly are due to both feeding deterrence and toxicity. In a replicated pot trial during two growing seasons, two corn lines developed by Agriculture Canada from CIMMYT collections, ITR 3872 with high DIMBOA content in roots, and NTR-2 Ger. 4042 with low DIMBOA content in roots, were evaluated for resistance to western corn rootworm larvae. The results indicated that the high DIMBOA line (but not the low DIMBOA line) stressed western corn rootworm larvae to produce inferior adults based on the measurement of adult emergence number, adult weight, and adult head-capsule width. The effect of western corn rootworm on both corn lines with different DIMBOA levels was measured based on plant growth parameters including plant height, stem thickness, plant fresh weight, root fresh weight, plant dry weight, and root dry weight. ITR 3872 (high DIMBOA) showed significantly less damage than NTR-2 Ger. 4042 (low DIMBOA) in almost all plant parameters measured. The results suggest that DIMBOA may in some instances contribute to the resistance of corn to western corn rootworm larvae.

Résumé

Le 2,4-dihydroxy-7-méthoxy-1,4-benzoxazin-3-one (DIMBOA), l’acide hydroxamique principal de la racine du maïs, a été étudié pour discerner son action envers la chrysomèle de l’ouest des racines du maïs, Diabrotica virgifera virgifera (LeConte). Les larves de la chrysomèle, se nourrissant des racines fraîches de maïs, sont mortes quand elles ont subit un traitement topique du DIMBOA. La valeur de la CF50 (concentration fatale pour occasionner une mortalité de 50%) a été 153 ppm (limites de confiance, 108–209) et la valeur de la CF90 était 917 ppm (560–2297). Les actions nocives du DIMBOA pour les larves sont probablement dues, soit à une dissuasion à se nourrir, soit à une toxicité. Dans des épreuves répétées dans les pots pendant deux saisons de croissance, deux lignées de maïs développées par Agriculture Canada à partir des collections CIMMYT, ITR 3872 ayant un niveau élevé du DIMBOA aux racines, et NTR-2 Ger. 4042 ayant un niveau bas du DIMBOA aux racines, ont été évaluées en ce qui concernait la résistance aux larves de la chrysomèle de l’ouest des racines du maïs. Les résultats ont démontré qu’à comparer à la lignée ayant un niveau bas de DIMBOA, la lignée ayant un niveau élevé du DIMBOA a placé les contraintes aux larves pour qu’elles produisent des adultes inférieurs en ce qui concernait le nombre à l’éclosion, le poids, et la largeur de la capsule de la tête. L’effet de la chrysomèle de l’ouest des racines du maïs sur les deux lignées a été évalué sur une base de paramètres de croissance de la plante, y compris la hauteur, l’épaisseur de la tige, le poids frais de la plante et des racines, et le poids sec de la plante et des racines. ITR 3872 (niveau élevé du DIMBOA) a démontré significativement moins de dommage que NTR-2 Ger. 4042 (niveau bas du DIMBOA), en ce qui concernait presque tous les paramètres évalués. Les résultats suggèrent que, dans quelques cas, le DIMBOA aurait pu contribuer à la résistance du maïs à la chrysomèle de l’ouest des racines du maïs.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Adkisson, P.L., and Dyck, V.A.. 1980. Resistant varieties in pest management system. pp. 233251 in Maxwell, F.G., and Jennings, P.R. (Eds.), Breeding Plants Resistant to Insects. John Wiley & Sons, Inc., New York, NY.Google Scholar
Argandoña, V.H., Luza, J.G., Niemeyer, H.M., and Corcuera, L.J.. 1980. Role of hydroxamic acids in the resistance of cereals aphids. Phytochemistry 19: 16651668.CrossRefGoogle Scholar
Argandoña, V.H., Niemeyer, H.M., and Corcuera, L.J.. 1981. Effect of content and distribution of hydroxamic acids in wheat on infestation by the aphid Schizaphis graminum. Phytochemistry 20: 673676.10.1016/0031-9422(81)85154-0CrossRefGoogle Scholar
Atkinson, J.K. 1989. A structure-activity study of naturally occurring and synthetic hydroxamic acids. Ph.D. thesis, University of Ottawa, Ottawa, Ont.Google Scholar
Branson, T.F., and Sutter, G.R.. 1985. Influence of population density of immatures on size, longevity, and fecundity of adult Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Ent. 14: 687690.CrossRefGoogle Scholar
Branson, T.F., Sutter, G.R., and Fisher, J.R.. 1982. Comparison of a tolerant and a susceptible maize inbred under artificial infestation of Diabrotica virgifera virgifera: yield and adult emergence. Environ. Ent. 11: 371372.10.1093/ee/11.2.371CrossRefGoogle Scholar
Branson, T.F., Welch, V.A., Sutter, G.R., and Fisher, J.R. 1983. Resistance to larvae of Diabrotica v. virgifera in three experimental maize hybrids. Environ. Ent. 12: 15091512.CrossRefGoogle Scholar
Campos, F., Atkinson, J., Arnason, J.T., Philogène, B.J.R., Morand, P., Werstiuk, N.H., and Timmins, G.. 1989. Toxicokinetics of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in the European corn borer, Ostrinia nubilalis (Hübner). J. Chem. Ecol. 15: 1989–2001.CrossRefGoogle Scholar
Corcuera, L.J., Woodward, M.D., Helgeson, J.P., Kelman, A., and Upper, C.D.. 1978. 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one, an inhibitor from Zea mays with differential activity against soft rotting Erwinia species. Plant Physiol. 61: 791795.CrossRefGoogle Scholar
Gutierrez, C., Guerrero, A., Castanera, P., and Torres, J.V.. 1982. A high-performance liquid chromatographic method for quantitation of DIMBOA and MBOA in maize plant extracts. J. Agric. Food Chem. 30: 12581260.10.1021/jf00114a066CrossRefGoogle Scholar
Klun, J.A., and Robinson, J.F.. 1969. Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of plant and its relation to resistance of host plant to the European corn borer. J. econ. Ent. 62: 214220.CrossRefGoogle Scholar
Klun, J.A., Tipton, C.L., and Brindley, T.A.. 1967. 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), an active agent resistance of maize to the European corn borer. J. econ. Ent. 60: 15291533.CrossRefGoogle Scholar
Long, B.J., Dunn, G.M., Bowman, J.S., and Routley, D.G.. 1977. Relationship of hydroxamic acid content in corn and resistance to corn leaf aphid. Crop Sci. 17: 5558.CrossRefGoogle Scholar
Long, B.J., Dunn, G.M., and Routley, D.G.. 1975. Relationship of hydroxamic acid content in maize and resistance to Northern cornleaf blight. Crop Sci. 15: 333335.10.2135/cropsci1975.0011183X001500030015xCrossRefGoogle Scholar
Metcalf, R.L. 1986. Foreword. pp. vii–xv in Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of Pest Diabrotica. Springer-Verlag, New York, NY.Google Scholar
Ortman, E.E., Branson, T.F., and Gerloff, E.D.. 1974. Techniques, accomplishments, and future potential of host plant resistance to Diabrotica. pp. 344–358 in Maxwell, F.G., and Harris, F.A. (Eds.), Proceedings of the Summer Institute on Biological Control of Plant Insects and Diseases. University Press of Mississippi, Jackson, MS. 647 pp.Google Scholar
Painter, R.H. 1951. Insect Resistance in Crop Plants. The Macmillan Co., New York, NY. 520 pp.Google Scholar
Palmer, D.F., Windels, M.W., and Chiang, H.C.. 1977. Artificial infestation of corn with western corn rootworm eggs in agar-water. J. econ. Ent. 70: 277278.10.1093/jee/70.3.277CrossRefGoogle Scholar
Robinson, J.F., Klun, J.A., Guthrie, W.D., and Brindley, T.A.. 1982. European corn borer (Lepidoptera: Pyralidae) leaf feeding resistance. DIMBOA bioassay. J. Kans. ent. Soc. 55: 357364.Google Scholar
SAS Institute. 1982. SAS User's Guide: Statistic. SAS Institute, Cary, NC.Google Scholar
Shank, D.B., Beatty, D.W., Fitzgerald, P.J., and Ortman, E.E.. 1965. SD-10 inbred corn for hybrids with resistance to corn rootworms. S. Dak. Farm Home Res. 16: 45.Google Scholar
Steel, R.G.D., and Tome, J.H.. 1980. Principles and Procedures of Statistics. McGraw-Hill, New York, NY.Google Scholar
Weiss, M.J., Seevers, K.P., and Mayo, Z.B.. 1985. Influence of western corn rootworm larval densities and damage on corn rootworm survival, developmental time, size and sex ratio. J. Kans. ent. Soc. 58: 397402.Google Scholar