Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T06:04:40.398Z Has data issue: false hasContentIssue false

RESPONSE OF THE WESTERN BALSAM BARK BEETLE, DRYOCOETES CONFUSUS SWAINE (COLEOPTERA: SCOLYTIDAE), TO HOST TREES BAITED WITH ENANTIOSPECIFIC BLENDS OF EXO- AND ENDO-BREVICOMIN

Published online by Cambridge University Press:  31 May 2012

Alejandro D. Camacho
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
John H. Borden
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

The response of the western balsam bark beetle, Dryocoetes confusus Swaine, to subalpine firs, Abies lasiocarpa (Hook.) Nutt., baited with (±)-exo-brevicomin (EXOB) or 9:1 blends of EXOB and endo-brevicomin (ENDOB), in two chiral combinations: (+):(±) and (+):(+), was assessed in a heavily infested stand in British Columbia. Unbaited control trees were not attacked, and the proportion of mass-attacked baited trees was similar for all other treatments. However, trees baited with the (+):(+) blend had the highest number of attacks per square metre, and they were also surrounded by the most attacked trees. The (+):(±) blend was intermediate in attractancy, and (±)EXOB was the least attractive bait. Pheromone-based management of D. confusus infestations may be more effective with the 9:1 blend of (+)EXOB:(+)ENDOB than with the previously used (±)EXOB baits.

Résumé

La réponse comportementale de Dryocoetes confusus Swaine vis-à-vis de sapins subalpins, Abies lasiocarpa (Hook.) Nutt., amorcés avec des mélanges phéromonaux a été testée sur un site fortement infesté en Colombie Britannique. Trois traitements ont été utilisés, du (±)-exo-brévicomine (EXOB) seul, et deux mélanges chiraux d’EXOB et d’endo-brévicomine (ENDOB) dans la proportion 9 : 1, (+) : (±) et (+) : (+). La proportion des arbres amorcés qui ont subis des attaques massives a été la même pour les différents traitements, au contraire des arbres contrôles, non amorcés, qui n’ont pas été attaqués. Le nombre de galleries contenant des larves a été plus important dans le cas des arbres amorcés avec le mélange (+) : (+). De plus, pour ces arbres, le nombre de points d’attaque par mètre carré et le nombre d’arbres environnant attaqués ont été plus élevés. Le traitement avec le (±)EXOB s’est averré le moins attractif alors que le mélange (+) : (±) a montré un pouvoir attractif intermédiaire. L’utilisation d’un mélange phéromonal 9 : 1 de (+)EXOB : (+)ENDOB pour contrôler l’infestation de D. confusus devrait être plus efficace que le (±)EXOB actuellement employé.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, M.S. 1937. Some examples of statistical methods of research in agriculture and applied biology. Journal of the Royal Statistical Society Suppl. 4: 137170.Google Scholar
Borden, J.H., Chong, L., McLean, J.A., Slessor, K.N., and Mori, K.. 1976. Gnathotrichus sulcatus: Synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192: 894896.CrossRefGoogle ScholarPubMed
Borden, J.H., Pierce, A.M., Pierce, H.D. Jr., Chong, L.J., Stock, A.J., and Oehlschlager, A.C.. 1987. Semiochemicals produced by the western balsam bark beetle, Dryocoetes confusus Swaine (Coleoptera: Scolytidae). Journal of Chemical Ecology 13: 823836.CrossRefGoogle ScholarPubMed
Bright, D.E. Jr., 1963. Bark beetles of the genus Dryocoetes (Coleoptera: Scolytidae) in North America. Annals of the Entomological Society of America 56: 103115.CrossRefGoogle Scholar
Bright, D.E. Jr., 1976. The Insects and Arachnids of Canada and Alaska. 2. Coleoptera: Scolytidae. Canadian Department of Agriculture Publication 1576: 241 pp. Ottawa, Ont.Google Scholar
British Columbia Ministry of Forests. 1992. Annual Report of the Ministry of Forests. Victoria, B.C.113 pp.Google Scholar
Butenandt, A., Beckman, R., and Stamm, D.. 1961. Über den Sexuallockstoff des Seidenspinners. II. Konstitution und Konfiguration des Bombykols. Zeitschrift für Physiologische Chemie 324: 8487.CrossRefGoogle Scholar
Camacho, A.D., Pierce, H.D. Jr., and Borden, J.H.. 1993. Geometrical and optical isomerism of pheromones in two sympatric Dryocoetes species (Coleoptera: Scolytidae) mediate species specificity and response level. Journal of Chemical Ecology 19: 21692182.CrossRefGoogle ScholarPubMed
Camacho, A.D., Pierce, H.D. Jr., and Borden, J.H. 1994. Aggregation pheromones in Dryocoetes affaber (Mann.) (Coleoptera: Scolytidae): Stereoisomerism and species specificity. Journal of Chemical Ecology 20: 111124.CrossRefGoogle Scholar
Council of Forest Industries of British Columbia. 1991. British Columbia Forest Industry Statistical Tables. Vancouver, B.C.17 pp.Google Scholar
Eliel, E.L. 1962. Stereochemistry of Carbon Compounds. McGraw-Hill, New York, NY. 486 pp.Google Scholar
Erickson, B., and Ferris, B.. 1992. Forest Insect and Disease Conditions. Cariboo Forest Region. 1992. Forestry Canada. Forest Insect and Disease Survey Report 93–1: 34 pp.Google Scholar
Garbutt, R., and Vallentgoed, J.. 1992. Forest Insect and Disease Conditions. Prince Rupert Forest Region. 1992. Forestry Canada. Forest Insect and Disease Survey Report 93–5: 38 pp.Google Scholar
Humpreys, N., and Ferris, B.. 1992. Forest Insect and Disease Conditions. Prince George Region. 1992. Forestry Canada. Forest Insect and Disease Survey FIDS Report 93–4: 34 pp.Google Scholar
Kendrick, W.B., and Molnar, A.C.. 1965. A new Ceratocystis and its Verticicladiella imperfect state associated with the bark beetle Dryocoetes confusus on Abies lasiocarpa. Canadian Journal of Botany 43: 3943.CrossRefGoogle Scholar
Kohnle, U., and Vité, J.P.. 1984. Bicyclic ketals in the chemical communication of European bark beetles. Naturwissenschaften 71: 47.CrossRefGoogle Scholar
Mathers, W.G. 1931. The biology of Canadian bark beetles. The seasonal history of Dryocoetes confusus Sw. The Canadian Entomologist 68: 247248.CrossRefGoogle Scholar
Molnar, A.C. 1965. Pathogenic fungi associated with a bark beetle on alpine fir. Canadian Journal of Botany 43: 463570.CrossRefGoogle Scholar
Payne, T.L. 1979. Pheromone and host odor perception in bark beetles. pp. 27–57 in Narahashi, T. (Ed.), Neurotoxicology of Insecticides and Pheromones. Plenum, New York, NY. 308 pp.Google Scholar
Riley, R.G., Silverstein, R.M., and Moser, J.C.. 1974. Biological responses of Atta texana to its alarm pheromone and the enantiomers of the pheromone. Science 183: 760762.CrossRefGoogle ScholarPubMed
SAS Institute. 1990. SAS System for Personal Computers, Release 6.04. SAS Institute Inc., Cary, NC.Google Scholar
Schlotzhauer, S.D., and Littell, R.C.. 1987. SAS System for Elementary Statistical Analysis. SAS Institute Inc., Cary, NC. 416 pp.Google Scholar
Schurig, V., Weber, R., Nicholson, G.J., Oehlschlager, A.C., Pierce, H.D. Jr., Pierce, A.M., Borden, J.H., and Ryker, L.C.. 1983. Enantiomer composition of natural exo- and endo-brevicomin by complexation gas chromatography/selected ion mass spectrometry. Naturwissenschaften 70: 9293.CrossRefGoogle Scholar
Seybold, S.J. 1992. The Role of Chirality in the Olfactory-oriented Aggregation Behavior of Pine Engraver Beetles in the Genus Ips (Coleoptera: Scolytidae). Ph.D. thesis, University of California, Berkeley, CA. 289 pp.Google Scholar
Sharpless, K.B., Amberg, W., Beller, M., Chen, H., Hartung, J., Kawanami, Y., Lubben, D., Manoury, E., Ogino, Y., Shibata, T., and Ukita, T.. 1991. New ligands double the scope of the catalytic asymmetric dihydroxylation of olefins. Journal Organic Chemistry 56: 45854588.CrossRefGoogle Scholar
Silverstein, R.M. 1979. Enantiomeric composition and bioactivity of chiral semiochemicals in insects. pp. 133–146 in Ritter, F.J. (Ed.), Chemical Ecology: Odour Communication in Animals. Elsevier/North Holland, Amsterdam. 427 pp.Google Scholar
Silverstein, R.M. 1988. Chirality in insect communication. Journal of Chemical Ecology 14: 19812004.CrossRefGoogle ScholarPubMed
Stock, A.J. 1981. The Western Balsam Bark Beetle, Dryocoetes confusus Swaine: Secondary Attraction and Biological Notes. M.Sc. thesis, Simon Fraser University, Burnaby, B.C.63 pp.Google Scholar
Stock, A.J. 1991. The Western Balsam Bark Beetle, Dryocoetes confusus Swaine.: Impact and Semiochemical-based Management. Ph.D. thesis, Simon Fraser University, Burnaby, B.C.133 pp.Google Scholar
Stock, A.J., and Borden, J.H.. 1983. Secondary attraction in the western balsam bark beetle, Dryocoetes confusus (Coleoptera: Scolytidae). The Canadian Entomologist 115: 539550.CrossRefGoogle Scholar
Stock, A.J., Borden, J.H., and Pratt, T.L.. 1994. Containment and concentration of infestations of the western balsam bark beetle, Dryocoetes confusus Swaine (Coleoptera: Scolytidae), using the aggregation pheromone exo-brevicomin. Canadian Journal of Forest Research. In press.CrossRefGoogle Scholar
Stock, A.J., Borden, J.H., Pratt, T.L., Pierce, H.C. Jr., and Johnston, B.D.. 1990. Endo-brevicomin: An antiaggregation pheromone for the western balsam bark beetle, Dryocoetes confusus Swaine (Coleoptera: Scolytidae). The Canadian Entomologist 122: 935940.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. 718 pp.Google Scholar