Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T10:56:15.442Z Has data issue: false hasContentIssue false

RESIDUAL TOXICITIES OF THREE INSECTICIDES TO FOUR SPECIES (COLEOPTERA: CARABIDAE) OF ARTHROPOD PREDATOR

Published online by Cambridge University Press:  31 May 2012

Tamer Çilgi
Affiliation:
Department of Biology, School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton, S016 7PX, United Kingdom
Steve D. Wratten
Affiliation:
Department of Biology, School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton, S016 7PX, United Kingdom
Jacqueline L. Robertson
Affiliation:
Department of Biology, School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton, S016 7PX, United Kingdom
David E. Turner
Affiliation:
Department of Biology, School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton, S016 7PX, United Kingdom
John M. Holland
Affiliation:
Department of Biology, School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton, S016 7PX, United Kingdom
Geoff K. Frampton
Affiliation:
Department of Biology, School of Biological Sciences, Biomedical Sciences Building, University of Southampton, Bassett Crescent East, Southampton, S016 7PX, United Kingdom

Abstract

In laboratory bioassays, four carabid species [Agonum dorsale (Pontoppidan), Bembidion lampros (Herbst), B. obtusum Serville, and Demetrias atricapillus (L.)] that are important predators of aphids in cereals in the United Kingdom were exposed to deposits of deltamethrin, dimethoate, or pirimicarb on glass for up to 72 h. We detected differences between compounds and species that are discussed in the context of exposure of these predators to insecticides in the field. We also describe problems involved in obtaining comparative toxicity data when dilutions of field application rates for target species are used in bioassays with nontarget species. Such problems add another dimension to risk assessment based on laboratory data.

Résumé

Au cours de tests en laboratoire, quatre espèces de carabes [Agonum dorsale (Pontoppidan), Bembidion lampros (Herbst), B. obtusum Serville et Demetrias atricapillus (L.)] qui sont d’importants prédateurs des pucerons sur les céréales en Grande-Bretagne ont été exposées pendant plus de 72 h à des frottis de deltaméthrine, de diméthoate ou de pirimicarbe sur du verre. Nous avons constaté des différences entre les produits et les espèces et ces différences sont examinées dans le contexte d’une exposition de ces prédateurs aux insecticides en nature. Nous décrivons également les problèmes encourus lors de l’obtention de données comparatives de la toxicité par emploi de dilutions utilisées en nature sur des espèces cibles au cours de tests en laboratoire sur des espèces non cibles. Ces problèmes ajoutent une nouvelle dimension aux évaluations, à partir de données de laboratoire, des risques reliés à des traitements.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, K.C., Lawton, J.H., and Shires, S.W.. 1983. Effects of insecticides on invertebrate predators and their cereal aphid (Hemiptera: Aphidae) prey: Laboratory experiments. Environmental Entomology 12: 17471750.CrossRefGoogle Scholar
Burn, A.J. 1992. Interactions between cereal pests and their predators and parasites. pp. 110131in Greig-Smith, P.W., Frampton, G.K., and Hardy, A.R. (Eds.), Pesticides, Cereal Farming and the Environment. HMSO, London.Google Scholar
Çilgi, T. 1993. Measurement of pesticide drift into field boundaries. pp. 417424in Proceedings of the ANPP & BCPC Second International Symposium on Pesticides Application Techniques, Strasbourg, Sept. 1993. Vol. 2. ANPP Publications Paris.Google Scholar
Çilgi, T. 1994. Selecting arthropod “indicator species” for environmental impact assessment of pesticides in field studies. Aspects of Applied Biology 37: 131140.Google Scholar
Çilgi, T., Frampton, G.K., and Wratten, S.D.. 1993. Long-term effects of current pesticide use on invertebrates in UK arable crops. Pesticide Science 39: 359360.Google Scholar
Çilgi, T., and Jepson, P.C.. 1992. The use of tracers to estimate the exposure of beneficial insects to direct pesticide spraying in cereals. Annals of Applied Biology 121: 239247.CrossRefGoogle Scholar
Coombes, D.S., and Sotherton, N.W.. 1986. The dispersal and distribution of polyphagous predatory Coleoptera in cereals. Annals of Applied Biology 108: 461474.CrossRefGoogle Scholar
Floate, K.D., Elliott, R.H., Doane, J.F., and Gillott, C.. 1989. Field bioassays to evaluate contact and residual toxicities to carabid beetles. Journal of Economic Entomology 82: 15431547.CrossRefGoogle ScholarPubMed
Graham-Bryce, I.J. 1977. Crop protection: A consideration of the effectiveness and disadvantages of current methods and scope of improvement. Philosophical Transactions of the Royal Society of London B 281: 163179.Google Scholar
Halsall, N.B., and Wratten, S.D.. 1988. The efficiency of pitfall trapping for polyphagous predatory Carabidae. Ecological Entomology 13: 293299.CrossRefGoogle Scholar
Jepson, P.C. 1989. The temporal and spatial pesticide side-effects on non-target invertebrates. pp. 95127in Jepson, P.C. (Ed.), Pesticides and Non-target Invertebrates. Intercept, Wimbome, Dorset, U.K.Google Scholar
Jepson, P.C. 1993. Insects, spiders and mites. pp. 299325in Callow, P. (Ed.), Handbook of Ecotoxicology. Vol. 1. Blackwell Scientific Publications, Oxford.Google Scholar
LeOra Software Inc. 1987. POLO-PC: A User's Guide to Probit Or Logit Analysis. Berkeley, CA.Google Scholar
Luff, M.L. 1978. Diet activity patterns of some field Carabidae. Ecological Entomology 3: 5362.CrossRefGoogle Scholar
Mann, B.P., Wratten, S.D., Poehling, M., and Borgemeister, C.. 1991. The economics of reduced-rate insecticide applications to control aphids in wheat. Annals of Applied Biology 119: 451464.CrossRefGoogle Scholar
Perrior, T.R. 1993. Chemical insecticides for the 21st century. Chemistry and Industry 22: 883887.Google Scholar
Poehling, H.M. 1989. Selective application strategies for insecticides in agricultural crops. pp. 151175in Jepson, P.C. (Ed.), Pesticides and Non-target Invertebrates. Intercept, Wimborne, Dorset, U.K.Google Scholar
Reed, J.P., Hall, F.R., and Kruger, H.R.. 1992. Contact and volatile toxicity of insecticides to black cutworm (Lepidoptera: Noctuidae) and carabid beetles (Coleoptera: Carabidae) in soil. Journal of Economic Entomology 85: 256261.CrossRefGoogle Scholar
Robertson, J.L., and Preisler, H.K.. 1992. Pesticide Bioassays with Arthropods. CRC Press, Boca Raton, FL. 127 pp.Google Scholar
Robertson, J.L., Smith, K.C., Savin, N.E., and Lavigne, R.J.. 1984. Effects of dose selection and sample size on precision of lethal dose estimates in dose-mortality regressions. Journal of Economic Entomology 77: 833837.CrossRefGoogle Scholar
Robertson, J.L., and Worner, S.P.. 1990. Population toxicology: Suggestions for laboratory bioassays to predict pesticide efficacy. Journal of Economic Entomology 83: 812.CrossRefGoogle Scholar
Shelton, A.M., Robertson, J.L., Tang, J.D., Perez, C., Eigenbrode, S.D., Preisler, H.K., Wilsey, W.T., and Cooley, R.J.. 1993. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. Journal of Economic Entomology 86: 697705.CrossRefGoogle Scholar
Stark, J.D., and Wennergren, U.. 1995. Can population effects of pesticides be predicted from toxicological studies? Journal of Economic Entomology 88: 10891096.CrossRefGoogle Scholar
Statistical Sciences Inc. 1992. S-Plus for DOS. Seattle, WA.Google Scholar
Sunderland, K.D., and Vickerman, G.P.. 1980. Aphid feeding on some polyphagous predators in relation to aphid density cereal fields. Journal of Applied Ecology 17: 389396.CrossRefGoogle Scholar
Unal, G., and Jepson, P.C.. 1991. The toxicity of aphicide residues to beneficial invertebrates in cereal crops. Annals of Applied Biology 118: 493502.CrossRefGoogle Scholar
Vickerman, G.P. 1992. The effects of different pesticide regimes on the invertebrate fauna of winter wheat. pp. 82108in Greig-Smith, P.W., Frampton, G.K., and Hardy, A.R. (Eds.), Pesticides, Cereal Farming and the Environment. HMSO, London.Google Scholar
Vickerman, G.P., Coombes, D.S., Turner, G., Mead-Briggs, M.A., and Edwards, J.. 1987. The effects of pirimicarb, dimethoate and deltamethrin on Carabidae and Staphlinidae in winter wheat. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 52: 213233.Google Scholar
Vickerman, G.P., and Sunderland, K.D.. 1975. Arthropods in cereal crops: Nocturnal activity, vertical distribution and aphid predation. Journal of Applied Ecology 12: 755766.CrossRefGoogle Scholar
Wiles, J.A., and Jepson, P.C.. 1993. The dietary toxicity of deltamethrin to the carabid, Nebria brevicollis (F.). Pesticide Science 38: 329334.CrossRefGoogle Scholar
Wratten, S.D., Wyatt, A.D., Carter, N., and Entwistle, J.C.. 1990. Economic consequences of pesticide use for grain aphid control on winter wheat in 1984 in England. Crop Protection 9: 7377.CrossRefGoogle Scholar