Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:01:13.783Z Has data issue: false hasContentIssue false

REPRODUCTIVE CYCLES OF THE RED TURNIP BEETLE, ENTOMOSCELIS AMERICANA BROWN (COLEOPTERA: CHRYSOMELIDAE)1

Published online by Cambridge University Press:  31 May 2012

G.H. Gerber
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

The reproductive cycles of the red turnip beetle, Entomoscelis americana Brown, were studied in the field in Manitoba from 1974 to 1978. Vitellogenesis is initiated within the first 3 days after emergence from aestivation in early August. Oviposition begins soon after the first eggs are developed, usually within the first 8 days after emergence. The rate of egg laying reaches a peak within 2 weeks after the initiation of oviposition and then declines gradually during the remainder of the oviposition period. Almost all eggs were laid between mid-August and mid-October. The average numbers of eggs laid per mated female in three oviposition studies were as follows: 1 female per cage (1974), 254±74 (±SE) (range, 11–696); 1 female per cage (1976), 273±47 (range, 0–622); and 25 females per cage (1974), 426±3 (range, 392–462). The most eggs were laid at the lowest temperature regime tested (6–20°C; mean, 12°C). Copulation is initiated in males and females during the 1st day after emergence from aestivation and both mate many times. Stimuli associated with copulation and (or) insemination enhance egg output, but are not required for the initiation of vitellogenesis and oviposition. Males transfer sufficient spermatozoa to the females during the first one or more copulations that occur during the first 8 days after emergence to fertilize almost all eggs produced. A system for classifying the stages of oocyte development is described.

Résumé

Les cycles reproducteurs de la chrysomèle du navet, Entomoscelis americana Brown, ont été étudiés sur le terrain au Manitoba de 1974 à 1979. La vitellogenèse commence dans les 3 premiers jours suivant l’émergence de l’estivation au début d’août. L’oviposition commence peu après la formation des premiers oeufs, généralement dans les 8 premiers jours après l’émergence. Le taux de ponte atteint un pic dans les 2 semaines suivant le début de l’oviposition et régresse ensuite graduellement pendant le reste de la période de ponte. Presque tous les oeufs sont pondus entre la mi-août et la mi-octobre. Le nombre moyen d’oeufs pondus par femelle fécondée dans trois études de ponte s’établit comme suit : 1 femelle par cage (1974), 254±74 (± ET) (écart de 11 à 696);1 femelle par cage (1976), 273±47 (écart de 0 à 622); et 25 femelles par cage (1974), 426±3 (écart de 392 à 462). La plupart des oeufs sont pondus au plus faible régime de température d’essai (6 à 20°C; moyenne de 12°C). La copulation commence chez les mâles et les femelles le premier jour après l’émergence de l’estivation et les deux sexes copulent plusieurs fois. Les stimuli associés à la copulation et (ou) à l’insémination favorisent la production d’oeufs, mais ne sont pas nécessaires pour provoquer la vitellogenèse et l’oviposition. Les mâles transfèrent suffisamment de spermatozoïdes aux femelles au cours de la première copulation ou des copulations subséquentes qui se produisent pendant les 8 premiers jours après l’émergence pour fertiliser presque tous les oeufs produits. L’auteur décrit un système de classification des stades de développement des oocytes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachowsky, A.S. 1963. Entomologie appliquée à l'agriculture. Tome I. Coléoptères. Vol. 2. Masson, Paris.Google Scholar
de Wilde, J., and de Loof, A.. 1973. Reproduction—Endocrine control. pp. 97157in Rockstein, M. (Ed.), The Physiology of Insecta, second ed.Academic Press, New York.CrossRefGoogle Scholar
Department of Energy, Mines and Resources. 1974. The national atlas of Canada, 4th ed. (revised). Macmillan, Ottawa.Google Scholar
Dick, J. 1937. Oviposition in certain Coleoptera. Ann. appl. Biol. 24: 762796.CrossRefGoogle Scholar
Engelmann, F. 1970. The physiology of insect reproduction. Pergamon Press, New York.Google Scholar
Gerber, G.H. 1982. A pest management system for the red turnip beetle on rapeseed and canola. Can. Agric. 27(3): 811.Google Scholar
Gerber, G.H. 1984 a. Influence of date of oviposition on egg hatching and embryo survival in the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae). Can. Ent. 116: 645652.CrossRefGoogle Scholar
Gerber, G.H. 1984 b. The distribution of the red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Can. Agric. Insect Pest Rev. 61(1983): 3947.Google Scholar
Gerber, G.H. 1985. New distribution records for the red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Can. Agric. Insect Pest Rev. 62(1984): 34.Google Scholar
Gerber, G.H., Neill, G.B., and Westdal, P.H.. 1979. The reproductive cycles of the sunflower beetle, Zygogramma exclamationis (Coleoptera: Chrysomelidae), in Manitoba. Can. J. Zool. 57: 19341943.CrossRefGoogle Scholar
Gillott, C. 1980. Entomology. Plenum Press, New York.Google Scholar
Gillott, C., and Friedel, T.. 1977. Fecundity-enhancing and receptivity-inhibiting substance produced by male insects: a review. Adv. Invert. Reprod. 1: 199218.Google Scholar
Hanford, R.H. 1932. The biology of the peppergrass beetle, Galeruca externa Say, with frequent references to the red turnip beetle, Entomoscelis adonidis (Pallas), and the external morphology of both species (Coleoptera: Chrysomelidae). M.Sc. Thesis, Univ. Saskatchewan, Saskatoon. 82 pp.Google Scholar
Hare, F.K., and Thomas, M.K.. 1979. Climate Canada. Wiley, Toronto.Google Scholar
Harper, F.R., and Berkenkamp, B.. 1975. Revised growth-stage key for Brassica campestris and B. napus. Can. J. Pl. Sci. 55: 657658.CrossRefGoogle Scholar
Weaver, N., and Thomas, R.C. Jr., 1956. A fixative for use in dissecting insects. Stain Technol. 31: 2526.CrossRefGoogle ScholarPubMed