Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T16:40:24.090Z Has data issue: false hasContentIssue false

RELATIONSHIP BETWEEN FOLIAR CHEMISTRY AND SUSCEPTIBILITY OF NORWAY SPRUCE (PINACEAE) TO PRISTIPHORA ABIETINA (HYMENOPTERA: TENTHREDINIDAE)

Published online by Cambridge University Press:  31 May 2012

Christa Schafellner*
Affiliation:
Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Agricultural Sciences, HasenauerstraBe 38, A-1190 Vienna, Austria
Roland Berger
Affiliation:
Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Agricultural Sciences, HasenauerstraBe 38, A-1190 Vienna, Austria
Arno Dermutz
Affiliation:
Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Agricultural Sciences, HasenauerstraBe 38, A-1190 Vienna, Austria
Erwin Führer
Affiliation:
Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Agricultural Sciences, HasenauerstraBe 38, A-1190 Vienna, Austria
Jutta Mattanovich
Affiliation:
Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Agricultural Sciences, HasenauerstraBe 38, A-1190 Vienna, Austria
*
1Author to whom all correspondence should be addressed.

Abstract

Following a 3-year period of high populations of the little spruce sawfly, Pristiphora abietina Christ, a monophagous species infesting Norway spruce, Picea abies Karst., we compared variations in foliar nutrients (nitrogen, water, soluble carbohydrates, starch) and potential defensive compounds (fiber, quinic and shikimic acids, tannins) of trees that had been subjected to high or very low levels of defoliation. During the time of needle expansion a substantial decline in leaf quality occurred: nitrogen, water, and carbohydrate levels decreased, whereas fiber and starch concentrations increased. Allelochemicals such as tannins and organic acids, however, peaked at bud break and then rapidly declined. More heavily attacked trees had higher nitrogen, water, and fiber contents but lower starch and organic acid concentrations than lightly attacked trees. The needle tannin content was significantly lower in heavily attacked trees throughout the period of larval feeding. Needle tannin levels and the nitrogen to tannin ratios seem to be the most probable traits to distinguish sawfly-resistant from sawfly-susceptible Norway spruce trees.

Résumé

Après 3 ans d’importantes infestations de la Tenthrède de l’épinette, Pristiphora abietina Christ, une espèce monophage parasite de l’épinette de Norvège, Picea abies Karst., nous avons comparé les variations dans les nutriments des feuilles (azote, eau, hydrates de carbone solubles, amidon) et les substances de défense présumées (fibres, acide quinique, acide shikimique, tanins) des arbres soumis à des degrés élevés ou très faibles de défoliation. Durant la période d’expansion des aiguilles, il s’est produit une importante diminution de la qualité du feuillage : les concentrations d’azote, d’eau et d’hydrates de carbone ont baissé, alors que les concentrations de fibres et d’amidon ont augmenté. Les substances allélochimiques telles que les tanins et les acides organiques ont cependant atteint leurs concentrations maximales à l’éclosion des bourgeons et ont par la suite diminué rapidement. Les arbres les plus parasités avaient des contenus en azote, en eau et en fibres plus élevés, mais des concentrations d’amidon et d’acides organiques plus faibles que les arbres moins parasités. Le contenu en tanins des aiguilles s’est avéré signifîcativement plus faible dans les arbres très parasités durant la période d’alimentation des larves. Les concentrations de tanins et les rapports azote/tanins sont sans doute les principales caractéristiques qui distinguent les épinettes de Norvège résistantes aux tenthrèdes, des épinettes qui sont sensibles à ces insectes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asquith, T.N., Butler, L.G. 1985. Use of dye-labeled protein as spectrophotometric assay for protein precipitants such as tannin. Journal of Chemical Ecology 11: 1535–44CrossRefGoogle ScholarPubMed
Athey, L.A., Connor, E.F. 1989. The relationship between foliar nitrogen content and feeding by Odontota dorsalis Thun. on Robinia pseudoacacia L. Oecologia 79: 390–94CrossRefGoogle ScholarPubMed
Benz, G. 1974. Negative Rückkoppelung durch Raum- und Nahrungskonkurrenz sowie zyklische Veränderung der Nahrungsgrundlage als Regelprinzip in der Populationsdynamik des Grauen Lärchenwicklers, Zeiraphera diniana (Guenee) (Lep., Tortricidae). Journal of Applied Entomology 76: 196228Google Scholar
Berger, R. 1990. Massenauftreten der Kleinen Fichtenblattwespe Pristiphora abietina (Christ) im Hausruck im Zusammenhang mit forstschädlichen Luftverunreinigungen. Dissertation an der Formal- und naturwissenschaftlichen Fakultät der Universität Wien, Vienna, AustriaGoogle Scholar
Berger, R. 1992. Massenauftreten der Kleinen Fichtenblattwespe Pristiphora abietina (Christ) im Hausruck. I. Okologische Rahmenbedingungen in einem ‘untypischen’ Befallsgebiet. Anzeiger für Schädlingskunde Pflanzenschutz und Umweltschutz 65: 105–14CrossRefGoogle Scholar
Berger, R., Katzensteiner, K. 1994. Massenauftreten der Kleinen Fichtenblattwespe Pristiphora abietina (Christ) (Hym., Tenthredinidae) im Hausruck. II. Immissions-ökologischer Einfluß. Journal of Applied Entomology 118: 253–66CrossRefGoogle Scholar
Bernays, E.A., Cooper Driver, G., Bilgener, M. 1989. Herbivores and plant tannins. Advances in Ecological Research 19: 263302CrossRefGoogle Scholar
Boehringer, Mannheim. 1989. UV-Test zur Bestimmung von nativer Stärke in Lebensmitteln und anderen Probematerialien. Boehringer Mannheim, Eigenrerlag, Mannheim, GermanyGoogle Scholar
Bryant, J.P., Chapin, F.S. III, Klein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 369–76CrossRefGoogle Scholar
Butler, L.G., Rogler, J.C. 1992. Biochemical mechanisms of the antinutritional effects of tannins. pp. 298304in C, H.o., Lee, C.L., Huang, M. (Eds.), Phenolic compounds in food and their effects on health. I. American Chemical Society, Washington, District of ColumbiaCrossRefGoogle Scholar
Dermutz, A. 1992. Muster und Dynamik löslicher Kohlenhydrate im Neuaustrieb von Fichten (Picea abies Karst.). Kapillargaschromatographische und enzymatische Untersuchungen an Fichtennadeln nach einem Befall durch die Kleine Fichtenblattwespe (Pristiphora abietina Christ). Diploma thesis, University of Agricultural Sciences, Vienna, AustriaGoogle Scholar
Dinish, K.N. 1974. As to food quality of spruce needles for forest damaging insects. 5. Studies on the starch splitting enzyme (amylase) in larvae of Gilpinia hercyniae Htg. Journal of Applied Entomology 77: 113–21Google Scholar
Dittrich, P., Kandler, O. 1971. Einfluß der Jahreszeit auf Bildung und Umsatz von Phenolkörpern in der Fichte (Picea abies [L.] Karst.). Berichte der Deutschen Botanischen Gesellschaft 84: 465–72CrossRefGoogle Scholar
Dittrich, P., Senser, M., Frielinghaus, J. 1989. Vergleichende Untersuchung der Dynamik von China- und Shikimisäure im Nadelstoffwechsel von Fichten (Picea abies [L.] Karst.) im Zusammenhang mit dem ‘Waldsterben’. Forstwissenschaftliches Centralblatt 108: 103–10CrossRefGoogle Scholar
Donaubauer, E. 1983. Die Forstschäden im Wandel der forstwirtschaftlichen Entwicklung Osterreichs. Centralblatt für das Gesamte Forstwesen 100: 120–32Google Scholar
Egger, A. 1989. Zur Wirkung und Nachhaltigkeit chemischer und biologischer Bekämpfungsmaßnahmen gegen die Kleine Fichtenblattwespe (Pristiphora abietina Christ.). Centralblatt für das Gesamte Forstwesen 118: 6377Google Scholar
Escherich, K. 1942. Familie Tenthredinidae. pp. 136–75 in Escherich, K. (Ed.), Die Forstinsekten Mitteleuropas. 5. Band: Hymenoptera (Hautflügler) und Diptera (Zweiflügler). Paul Parey Verlag, BerlinGoogle Scholar
Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–81CrossRefGoogle Scholar
Führer, E. 1989. Epidemics of insects and mites in the forest decline complex. pp. 359–79 in Ulrich, B. (Ed.), International Congress on Forest Decline Research: State of Knowledge and Perspectives, Friedrichshafen, 2.-6.10.1989, GermanyGoogle Scholar
Führer, E., Polli, M. 1992. Die Kleine Fichtenblattwespe im Hausruck: Fluktuationsmuster und Standortsfaktoren. Forschungsprojekt MAB 2/2, Endbericht, Institut für Forstentomologie, Forstpathologie und Forstschutz, Universität für Bodenkultur, Vienna, AustriaGoogle Scholar
Haslam, E. 1989. Plant polyphenols, vegetable tannins revisited. Cambridge University Press, Cambridge, New YorkGoogle Scholar
Hatcher, P.E. 1990. Seasonal and age-related variation in the needle quality of five conifer species. Oecologia 85: 200–12CrossRefGoogle ScholarPubMed
Holzer, K., Schultze, U. 1988. Die Bedeutung von Herkunft und Austrieb bei einem Fichtenblattwespenbefall. Centralblatt für das gesamte Forstwesen 105: 207–16Google Scholar
Hunter, A.F., Lechowicz, M.J. 1992. Foliage quality changes during canopy development of some northern hardwood trees. Oecologia 89: 316–23CrossRefGoogle ScholarPubMed
Ikeda, T., Matsumura, F., Benjamin, D.M. 1977. Chemical basis for feeding adaptation of pine sawflies, Neodiprion rugifrons and Neodiprion swainei. Science (Washington, D.C.) 197: 497–98CrossRefGoogle ScholarPubMed
Jahn, E., Sinreich, A., 1962. Beobachtungen zur Verbreitung der Kleinen Fichtenblattwespe Pristiphora abietina Christ. in Österreich im Zeitraum 1945–1962 und zur Auswirkung verschiedener Bekämpfungsmethoden. Journal of Applied Entomology 51: 165–81Google Scholar
Jensen, R.A. 1985. The shikimate/aromate pathway: link between carbohydrate metabolism and secondary metabolism. Physiologia Plantarum 66: 164–68CrossRefGoogle Scholar
Jensen, T.S. 1988. Variability of Norway spruce (Picea abies L.) needles; performance of spruce sawflies (Gilpinia hercyniae Htg.) Oecologia 77: 313–20CrossRefGoogle ScholarPubMed
Krause, S.C., Raffa, K., Wagner, M.R. 1993. Tree response to stress: a role in sawfly outbreak? pp. 211–27 in Wagner, M., Raffa, K.F. (Eds.), Sawfly Life History Adaptions to Woody Plants, Academic Press, New York.Google Scholar
Kulcke, J. 1983. As to the food quality of spruce needles for forest damaging insects. 21. Comparison of the larval development and of the utilization of needle compounds of spruce (Picea abies Karst.) by larvae of Gilpinia hercyniae (Hym., Diprionidae), Lymantria monacha, and Lymantria dispar (Lep., Lymantriidae.) feeding simultaneously on identical plant material. Journal of Applied Entomology 95: 390405Google Scholar
Langström, B., Tenow, O., Ericsson, A., Hellqvist, C., Larsson, S. 1990. Effects of shoot pruning on stem growth, needle biomass, and dynamics of carbohydrates and nitrogen in Scots pine as related to season and tree age. Canadian Journal of Forest Reserarch 20: 514–23CrossRefGoogle Scholar
Larsson, S., Ohmart, C.P. 1988. Leaf age and larval performance of the leaf beetle Paropsis atomaria. Ecological Entomology 13: 1924CrossRefGoogle Scholar
Larsson, S., Bjorkman, C., Greef, R. 1986. Responses of Neodiprion sertifer (Hym., Diprionidae) larvae to variation in needle resin acid concentration in Scots pine. Oecologia 70: 7784CrossRefGoogle ScholarPubMed
Lindner, W., Grill, D. 1978. Säuren in Koniferennadeln. Phyton (Austria) 18: 137–44Google Scholar
Lindroth, R.L., Bloomer, M.S. 1991. Biochemical ecology of the forest tent caterpillar: responses to dietary protein and phenolic glycosides. Oecologia 86: 408–13CrossRefGoogle ScholarPubMed
Lunderstädt, J., Ahlers, S. 1983. As to food quality of spruce needles used for forest damaging insects. 19. About the changes chemical components of spruce needles undergo in the course of the year in respect to their physiological valence within the systemic bond between spruce (Picea abies Karst.) and the sawfly Gilpinia hercyniae (Hym., Diprionidae). Journal of Applied Entomology 95: 141–50Google Scholar
Lunderstädt, J., Claus, G. 1972. As to food quality for spruce needles for forest damaging insects. 2. Comparative analyses of the compounds in spruce needles and the faeces of larvae of Gilpinia hercyniae Htg. Journal of Applied Entomology 70: 386403Google Scholar
Lunderstädt, J., Hoppe, I.M. 1975. As to food quality of spruce needles for forest damaging insects. 6. Utilization of nutritives by the larvae of Gilpinia hercyniae Htg. (Hym., Diprionidae) feeding with spruce needles under standard conditions. Journal of Applied Entomology 79: 177–93Google Scholar
Lunderstädt, J., Reymers, A. 1980. As to food quality of spruce needles for forest damaging insects. 14. Interrelationships between proteins and phenols after feeding larvae of Gilpinia hercyniae (Hym., Diprionidae) with spruce. Journal of Applied Entomology 90: 113–26Google Scholar
Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11: 119–61CrossRefGoogle Scholar
Mattson, W.J., Haack, R.A. 1987. The role of drought in outbreaks of plant-eating insects. BioScience 37: 100–18CrossRefGoogle Scholar
Merker, E., Adlung, K.G. 1956. Das Auffinden der Wirtspflanze durch fliegende Fichtenblattwespen. Die Naturwissenschaften 12: 286CrossRefGoogle Scholar
Neuvonen, S., Haukioja, E. 1984. Low nutritive quality as defence against herbivores: induced responses in birch. Oecologia 63: 7174CrossRefGoogle ScholarPubMed
Niemelä, P., Tuomi, J., Mannila, R., Ojala, P. 1984. The effect of previous damage on the quality of Scots pine foliage for Diprionid sawflies. Journal of Applied Entomology 98: 3343Google Scholar
Ohnesorge, B., Thalenhorst, W. 1966. Untersuchungen über die Populationsdynamik der Kleinen Fichtenblattwespe Pristiphora abietina (Christ) (Hym. Tenthr.). III. Teil: Die Latenz. Journal of Applied Entomology 57: 229–93Google Scholar
Piene, H., Percy, K. 1984. Changes in needle morphology, anatomy, and mineral content during recovery of protected balsam fir trees initially defoliated by the spruce budworm. Canadian Journal of Forest Research 41: 238–45CrossRefGoogle Scholar
Pschorn-Walcher, H. 1982. Tenthredinidae, Echte Blattwespen. pp. 174–96 in Schwenke, W. (Ed.), Die Forstschädlinge Europas' 4. Band. Paul Parey Verlag, Hamburg and Berlin, GermanyGoogle Scholar
Puttick, G.M. 1986. Utilization of evergreen and deciduous oaks by the Californian oak moth, Phryganidia californica Oecologia 68: 589–94CrossRefGoogle ScholarPubMed
Quiring, D.T. 1992. Rapid changes in suitability of white spruce for a specialist herbivore, Zeiraphera canadensis, as a function of leaf age. Canadian Journal of Zoology 70: 2132–38CrossRefGoogle Scholar
Quiring, D.T., Butterworth, E.W. 1994. Genotype and environment interact to influence acceptability and suitability of white spruce for a specialist herbivore, Zeiraphera canadensis. Ecological Entomology 19: 230–38CrossRefGoogle Scholar
Schafellner, C., Berger, R., Mattanovich, J., Führer, E. 1993. Pristiphora abietina (Hym., Tenthredinidae) - ein Bioindikator für Luftverschmutzung? Besonderheiten unreifer Fichtennadeln als Larvenfutter. Forstwissenschaftliches Centralblatt 112: 116–28CrossRefGoogle Scholar
Schafellner, C., Berger, R., Mattanovich, J., Führer, E. 1994. Food quality of spruce needles and the performance of the little spruce sawfly, Pristiphora abietina (Hym., Tenthredinidae). The protein precipitating ability of the young needles. Acta Horticulturae 381: 717–20CrossRefGoogle Scholar
Schafellner, C., Berger, R., Mattanovich, J., Führer, E. 1996. Variations in spruce needle chemistry and implications for the little spruce sawfly, Pristiphora abietina. pp. 248–56 in Mattson, W.J., Niemelä, P., Rousi, M. (Eds.), Dynamics of forest herbivory: quest for pattern and principle. US Forest Service General Technical Report NC–183Google Scholar
Schedl, K. 1953. Die Kleine Fichtenblattwespe. Verlag Forstliche Bundesversuchsanstalt Mariabrunn, AustriaGoogle Scholar
Schimitschek, E. 1947. Massenauftreten wichtiger Forstinsekten in Österreich. Centralblatt für das Gesamte Forst- und Holzwesen 70: 158204Google Scholar
Schimitschek, E. 1969. Grundzüge Waldhygiene. Paul Parey Verlag, Hamburg, BerlinGoogle Scholar
Schopf, R. 1980. As to the food quality of spruce needles for forest damaging insects. 13. Studies on the nitrogen balance of larvae of Gipinia hercyniae Htg. (Hym., Diprionidae) after feeding on needles of spruce (Picea abies Karst) from different provenances. Journal of Applied Entomology 89: 312Google Scholar
Schopf, R. 1983. As to the food quality of spruce needles for forst damaging insects. 20. Correlations of the concentrations of spruce needle compounds with developmental parameters of the sawfly Gilpinia hercyniae Htg. (Hym., Diprionidae). Journal of Applied Entomology 95: 189–96Google Scholar
Schopf, R. 1986. The effect of secondary needles compounds on the development of phytophagous insects. Forest Ecology and Management 15: 5564CrossRefGoogle Scholar
Schopf, R., Mignat, C., Hedden, P. 1982. As to the food quality of spruce needles for forest damaging insects. 18. Resorption of secondary plant metabolites by the sawfly Gilpinia hercyniae Htg. (Hym., Diprionidae). Journal of Applied Entomology 93: 244–57Google Scholar
Schultz, J.C., Lechowicz, M.J. 1986. Host plant, larval age, and feeding behaviour influence midgut pH in the Gypsy moth (Lymantria dispar). Oecologia 70: 133–37CrossRefGoogle Scholar
Schwarz, F. 1981. Die Fichtenblattwespe - ein Dauerschädling der Fichte im Alpenvorland? Amtliche Linzer Zeitung 47Google Scholar
Schwenke, W. 1962. Über die Beziehungen zwischen dem Wasserhaushalt von Bäumen und der Vermehrung blattfressender Insekten. Journal of Applied Entomology 51: 371–76Google Scholar
Scriber, J.M., Slansky, F. 1981. The nutritional ecology of immature insects. Annual Review of Entomology 26: 183211CrossRefGoogle Scholar
Sierpinski, Z. 1985. Luftverunreinigungen und Forstschädlinge. Journal of Applied Entomology 99: 16Google Scholar
Tuomi, J., Niemelä, P., Haukioja, E., Siren, S., Neuvonen, S. 1984. Nutrient stress: an explanation for plant anti-herbivore responses to defoliation. Oecologia 61: 208–10CrossRefGoogle ScholarPubMed
Wagner, M.R., Evans, P.D. 1985. Defoliation increases nutritional quality and allelochemics of pine seedlings. Oecologia 67: 235–37CrossRefGoogle ScholarPubMed
Wentzel, K.F., Ohnesorge, B. 1961. Zum Auftreten von Schadinsekten bei Luftverunreinigungen. Forstarchiv 32: 177–86Google Scholar