Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T06:22:59.043Z Has data issue: false hasContentIssue false

Reduced food consumption in the grasshopper Melanoplus sanguinipes (Orthoptera: Acrididae) parasitized by Blaesoxipha atlanis (Diptera: Sarcophagidae)1

Published online by Cambridge University Press:  02 April 2012

Troy Danyk*
Affiliation:
Agriculture and Agri-Food Canada, 5403 – 1st Avenue South, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1
Manfred Mackauer
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
Dan L. Johnson
Affiliation:
Agriculture and Agri-Food Canada, 5403 – 1st Avenue South, P.O. Box 3000, Lethbridge, Alberta, Canada T1J 4B1, and Department of Geography, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
*
2Corresponding author (e-mail: [email protected]).

Abstract

Blaesoxipha atlanis (Aldrich) is a common parasite of Melanoplus sanguinipes (Fabr.) in western Canada. We tested the hypothesis that parasitism by B. atlanis reduces food consumption by adult M. sanguinipes. Unparasitized grasshoppers serving as controls and grasshoppers infected with a single parasite larva were fed known quantities of freshly cut wheat (Triticum aestivum L. ‘Katepwa’) (Poaceae) leaves in the laboratory. The median development time in hosts of larvae of both male and female B. atlanis was 5.5 days. Two thirds of parasitized grasshoppers died within 9 days of infection, but all control insects survived. The dry mass of leaves consumed each day did not differ between parasitized insects that died and insects that survived parasitism; both groups fed less than unparasitized controls. The influence of parasitism on food consumption differed between host sexes, with feeding being depressed earlier and more severely in female than in male grasshoppers. The reduction in food consumption was most pronounced on day 6 after infection, when parasitized males and females consumed only 10% and 7%, respectively, of the food consumed by unparasitized controls. Parasite sex did not influence food consumption. Grasshoppers that survived parasitism by B. atlanis resumed feeding, consuming as much as unparasitized counterparts. Reduced food consumption limited the ability of grasshoppers to compensate for the nutritional demands of developing parasite larvae. As a consequence, parasitized grasshoppers lost body mass during the interaction. We propose that the temporary reduction in feeding by grasshoppers parasitized by B. atlanis that survive parasitism is not evidence of host regulation, but is consistent with a stress-induced alteration in host behaviour.

Résumé

Blaesoxipha atlanis (Aldrich) est un parasite commun de Melanoplus sanguinipes (Fabr.) dans l'Ouest canadien. Nous avons vérifié l'hypothèse selon laquelle le parasitisme par B. atlanis réduit la consommation de nourriture chez les adultes de M. sanguinipes. En laboratoire, nous avons nourri de quantités connues de feuilles de blé (Triticum aestivum L. ‘Katepwa’) (Poaceae) fraîchement coupées des criquets témoins non parasités et des criquets porteurs d'une seule larve du parasite. La durée médiane du développement des larves mâles et femelles de B. atlanis dans leurs hôtes est de 5,5 jours. Deux tiers des criquets parasités sont morts en moins de 9 jours de l'infection, mais tous les criquets témoins ont survécu. La masse sèche des feuilles consommées chaque jour était la même chez les insectes parasités qui sont morts et chez ceux qui ont survécu au parasitisme; les deux groupes ont mangé moins que les témoins non parasités. L'influence du parasitisme sur la consommation de nourriture n'est pas la même chez les hôtes mâles et femelles: l'alimentation est réduite plus tôt et plus fortement chez les criquets femelles que chez les mâles. La réduction de la consommation de nourriture est maximale au jour 6 après l'infection; à ce moment, les mâles et les femelles parasités ne consomment respectivement que 10 % et 7 % de la nourriture ingérée par les témoins non parasités. Le sexe du parasite n'influence pas la consommation de nourriture. Les criquets qui survivent au parasitisme par B. atlanis se remettent à manger et consomment alors autant que les témoins non parasités. La réduction de la consommation de nourriture limite la capacité des criquets à compenser pour les besoins alimentaires des larves du parasite en développement. En conséquence, les criquets connaissent une réduction de leur masse corporelle pendant la durée du parasitisme. Nous croyons que la réduction temporaire de l'alimentation chez les criquets parasités par B. atlanis qui survivent au parasitisme n'est pas, de toute évidence, une régulation opérée par l'hôte, mais plutôt une altération du comportement de l'hôte causée par le stress.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. (387) 04035 of the Agriculture and Agri-Food Canada Lethbridge Research Centre, Lethbridge.

References

Adamo, S.A., Robert, D., and Hoy, R.R. 1995. Effects of a tachinid parasitoid, Ormia ochracea, on the behavior and reproduction of its male and female field cricket hosts (Gryllus spp). Journal of Insect Physiology, 41: 269277.Google Scholar
Askew, R.R. 1971. Parasitic insects. American Elsevier Publishing Company, Inc., New York.Google Scholar
Baker, G.L. 1995. Larval development of Blaesoxipha pachytyli (Skuse) (Diptera: Sarcophagidae), a parasite of grasshoppers and locusts (Orthoptera: Acrididae) in Australia. Journal of the Entomological Society of Australia, 34: 129133.CrossRefGoogle Scholar
Beckage, N.E. 1985. Endocrine interactions between endoparasitic insects and their hosts. Annual Review of Entomology, 30: 371413.Google Scholar
Beckage, N.E., and Riddiford, L.M. 1978. Developmental interactions between the tobacco hornworm Manduca sexta and its braconid parasite Apanteles congregatus. Entomologia Experimentalis et Applicata, 23: 139151.Google Scholar
Bourchier, R. 1991. Growth and development of Compsilura concinnata (Meigan) (Diptera: Tachinidae) parasitizing gypsy moth larvae feeding on tannin diets. The Canadian Entomologist, 123: 10471055.CrossRefGoogle Scholar
Brewer, F.D., and King, E.G. 1978. Effects of parasitism by a tachinid, Lixophaga diatraeae, on growth and food consumption of sugarcane borer larvae. Annals of the Entomological Society of America, 71: 1922.Google Scholar
Byers, J.R., Yu, D.S., and Jones, J.W. 1993. Parasitism of the army cutworm, Euxoa auxiliaris (Grt.) (Lepidoptera: Noctuidae), by Copidosoma bakeri (Howard) (Hymenoptera: Encyrtidae) and effect on crop damage. The Canadian Entomologist, 125: 329335.Google Scholar
Casu, R.E., Eisemann, C.H., Vuocolo, T., and Tellam, R.L. 1996. The major excretory/secretory protease from Lucilia cuprina larvae is also a gut digestive protease. International Journal for Parasitology, 26: 623628.Google Scholar
Chapman, R.F., and Sword, G.A. 1994. The relationship between plant acceptability and suitability for survival and development of the polyphagous grasshopper, Schistocerca americana (Orthoptera: Acrididae). Journal of Insect Behavior, 7: 411431.CrossRefGoogle Scholar
Cloutier, C., and Mackauer, M. 1979. The effect of parasitism by Aphidius smithi (Hymenoptera: Aphidiidae) on the food budget of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Canadian Journal of Zoology, 57: 16051611.CrossRefGoogle Scholar
Couchman, J.R., and King, P.E. 1979. Effect of the parasitoid Diaeretiella rapae on the feeding rate of its host Brevicoryne brassicae. Entomologia Experimentalis et Applicata, 25: 915.CrossRefGoogle Scholar
Crump, M.L., and Pounds, J.A. 1985. Lethal parasitism of an aposematic anuran (Atelopus varius) by Notochaeta bufonivora (Diptera: Sarcophagidae). Journal of Parasitology, 71: 588591.Google Scholar
Danyk, T., Johnson, D.L., and Mackauer, M. 2000. Parasitism of the grasshopper Melanoplus sanguinipes by a sarcophagid fly, Blaesoxipha atlanis: influence of solitary and gregarious development on host and parasitoid. Entomologia Experimentalis et Applicata, 94: 259268.Google Scholar
Dial, R., and Roughgarden, J. 1996. Natural history observations of Anolisomyia rufianalis (Diptera: Sarcophagidae) infesting Anolis lizards in a rain forest canopy. Environmental Entomology, 25: 13251328.Google Scholar
Duodu, Y.A., and Antoh, F.F. 1984. Effects of parasitism by Apanteles sagax [Hym.: Braconidae] on growth, food consumption and food utilization in Sylepta degogata larvae [Lep.: Pyralidae]. Entomophaga, 29: 6371.Google Scholar
Elliott, R.H., and Gillott, C. 1977. Changes in protein concentration and volume of the haemolymph in relation to yolk deposition, ovariectomy, allatectomy, and cautery of the median neurosecretory cells in Melanoplus sanguinipes. Canadian Journal of Zoology, 55: 97103.CrossRefGoogle Scholar
Gillespie, J.P., Bidochka, M.J., and Khachatourians, G.G. 1991. Separation and characterization of grasshopper hemolymph phenoloxidases by sodium dodecyl sulfate—polyacrylamide gel electrophoresis. Comparative Biochemistry and Physiology C: Comparative Pharmacology and Toxicology, 98: 351358.CrossRefGoogle Scholar
Godfray, H.C.J. 1994. Parasitoids, behavioral and evolutionary ecology. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Grenier, S., Delobel, B., and Bonnot, G. 1986. Physiological considerations of importance to the success of in vitro culture: an overview. Journal of Insect Physiology, 32: 403408.Google Scholar
Hall, M., and Wall, R. 1995. Myiasis of humans and domestic animals. Advances in Parasitology, 35: 257334.Google Scholar
Holmberg, R.G., and Hardman, J.M. 1984. Relating feeding rates to sex and size in six species of grasshoppers (Orthoptera: Acrididae). The Canadian Entomologist, 116: 597606.Google Scholar
Horton, D.R., and Moore, J. 1993. Behavioral effects of parasites and pathogens in insect hosts. In Parasites and pathogens of insects. Vol. 1. Edited by Beckage, N.E., Thompson, S.N., and Federici, B.A.. Academic Press, Inc., San Diego, California. pp. 107124.Google Scholar
Johnson, D.L. 1989. Spatial analysis of the relationship of grasshopper outbreaks to soil classification. Lecture Notes in Statistics, 55: 347359.Google Scholar
Johnson, D.L., and Mündel, H.H. 1987. Grasshopper feeding rates, preferences, and growth on safflower. Annals of Applied Biology, 111: 4352.CrossRefGoogle Scholar
Johnson, D.L., and Pavlikova, E. 1986. Reduction of consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporidia: Nosematidae). Journal of Invertebrate Pathology, 48: 232238.Google Scholar
Jones, D., Jones, G., Rudnicka, M., Click, A., Reck-Malleczewen, V., and Iwaya, M. 1986. Pseudoparasitism of host Trichoplusia ni by Chelonus spp. as a new model system for parasite regulation of host physiology. Journal of Insect Physiology, 32: 315328.CrossRefGoogle Scholar
Mackauer, M., and Sequeira, R. 1993. Patterns of development in insect parasites. In Parasites and pathogens of insects. Vol. 1. Edited by Beckage, N.E., Thompson, S.N., and Federici, B.A.. Academic Press, Inc., San Diego, California. pp. 123.Google Scholar
Mackauer, M., Sequeira, R., and Otto, M. 1997. Growth and development in parasitoid wasps: adaption to variable host resources. In Vertical food web interactions: evolutionary patterns and driving forces. Edited by Dettner, K., Bauer, G., and Völkl, W.. Ecological Studies. Vol. 130. Springer-Verlag, Berlin, Germany. pp. 191203.Google Scholar
Michener, G.R. 1993. Lethal myiasis of Richardson's ground squirrels by the sarcophagid fly Neobellieria citellivora. Journal of Mammalogy, 74: 148155.CrossRefGoogle Scholar
Miranpuri, G.S., Bidochka, M.J., and Khachatourians, G.G. 1991. Morphology and cytochemistry of hemocytes and analysis of hemolymph from Melanoplus sanguinipes (Orthoptera: Acrididae). Journal of Economic Entomology, 84: 371378.CrossRefGoogle Scholar
Moore, D., Reed, M., Le Patourel, G., Abraham, Y.J., and Prior, C. 1992. Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. Journal of Invertebrate Pathology, 60: 304307.CrossRefGoogle Scholar
Nogge, G. 1972. Untersuchungen zur extraintestinalen Verdauung bei den Larven von Hypoderma bovis (DeGeer) (Diptera, Hypodermatidae). Zeitschrift für Parasitenkunde, 38: 295302.Google Scholar
Olfert, O., and Erlandson, M.A. 1991. Wheat foliage consumption by grasshoppers (Orthoptera: Acrididae) infected with Melanoplus sanguinipes entomopoxvirus. Environmental Entomology, 20: 17201724.CrossRefGoogle Scholar
Oma, E.O., and Hewitt, G.B. 1984. Effect of Nosema locustae (Microsporidia: Nosematidae) on food consumption in the differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology, 77: 500501.Google Scholar
O'Neill, K.M., Streett, D., and O'Neill, R.P. 1994. Scavenging behaviour of grasshoppers (Orthoptera: Acrididae): feeding and thermal responses to newly available resources. Environmental Entomology, 23: 12601268.CrossRefGoogle Scholar
Ouedraogo, R.M., Goettel, M.S., and Brodeur, J. 2004. Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection. Oecologia, 138: 312319.CrossRefGoogle ScholarPubMed
Parker, F.D., and Pinnell, R.E. 1973. Effect on food consumption of the imported cabbageworm when parasitized by two species of Apanteles. Environmental Entomology, 2: 216219.CrossRefGoogle Scholar
Pavillard, E.R., and Wright, E.A. 1957. An antibiotic from maggots. Nature (London), 180: 916917.CrossRefGoogle ScholarPubMed
Pickford, R., and Randell, R.L. 1969. A nondiapause strain of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). The Canadian Entomologist, 101: 894896.Google Scholar
Poulin, R. 1995. Adaptive changes in the behaviour of parasitized animals: a critical review. International Journal of Parasitology, 25: 13711383.CrossRefGoogle ScholarPubMed
Rees, N.E. 1973. Arthropod and nematode parasites, parasitoids, and predators of Acrididae in North America north of Mexico. Technical Bulletin No. 1460. Agricultural Research Service, United States Department of Agriculture, Washington, District of Columbia.Google Scholar
Rees, N.E. 1986. Effects of dipterous parasites on production and viability of Melanoplus sanguinipes eggs (Orthoptera: Acrididae). Environmental Entomology, 15: 205206.Google Scholar
SAS Institute Inc. 1989. SAS/STAT user's guide. Version 6. 4th ed. SAS Institute Inc., Cary, North Carolina.Google Scholar
Sieglaff, D.H., Pereira, R.M., and Capinera, J.L. 1997. Pathogenicity of Beauveria bassiana and Metarhizium flavoviride (Deuteromycotina) to Schistocerca americana (Orthoptera: Acrididae). Journal of Economic Entomology, 90: 15391545.Google Scholar
Simmons, L.W. 1994. Reproductive energetics of the role reversing bushcricket, Kawanaphila nartee (Orthoptera: Tettigoniidae: Zaprochilinae). Journal of Reproductive Biology, 7: 189200.Google Scholar
Slansky, F. Jr., 1978. Utilization of energy and nitrogen by larvae of the imported cabbageworm, Pieris rapae, as affected by parasitism by Apanteles glomeratus. Environmental Entomology, 7: 179185.CrossRefGoogle Scholar
Slansky, F. Jr., 1986. Nutritional ecology of endoparasitic insects and their hosts: an overview. Journal of Insect Physiology, 32: 255261.Google Scholar
Sokal, R.R., and Rohlf, F.J. 1995. Biometry. 3rd ed. W.H. Freeman and Co., New York.Google Scholar
Soo Hoo, C.F., and Seay, R.S. 1972. Effects of parasitism by Voria ruralis on the feeding behavior of larvae of Trichoplusia ni. Israel Journal of Entomology, 7: 3740.Google Scholar
Thomas, M.B., Blanford, S., and Lomer, C.J. 1997. Reduction in feeding by the variegated grasshopper, Zonocerus variegatus, following infection by the fungal pathogen, Metarhizium flavoviride. Biocontrol Science and Technology, 7: 327334.CrossRefGoogle Scholar
Thompson, S.N. 1993. Redirection of host metabolism and effects on parasite nutrition. In Parasites and pathogens of insects. Vol. 1. Edited by Beckage, N.E., Thompson, S.N., and Federici, B.A.. Academic Press, Inc., San Diego, California. pp. 125144.Google Scholar
Thompson, S.N., and Kavaliers, M. 1994. Physiological bases for parasite-induced alterations of host behaviour. Parasitology, 109: S119–S138.Google Scholar
Vincent, M.J., Miranpuri, G.S., and Khachatourians, G.G. 1993. Acid phosphatase activity in hemolymph of the migratory grasshopper, Melanoplus sanguinipes, during Beauveria bassiana infection. Entomologia Experimentalis et Applicata, 67: 161166.Google Scholar
Vinson, S.B. 1990. How parasitoids deal with the immune system of their hosts: an overview. Archives of Insect Biochemistry and Physiology, 13: 327.CrossRefGoogle Scholar