Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T13:38:31.496Z Has data issue: false hasContentIssue false

A RAPID AND SIMPLE FLOUR-DISK BIOASSAY FOR TESTING SUBSTANCES ACTIVE AGAINST STORED-PRODUCT INSECTS1

Published online by Cambridge University Press:  31 May 2012

Y.S. Xie
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.P. Bodnaryk
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
P.G. Fields
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

A rapid and simple flour-disk bioassay was developed to assay biologically active substances on several species of stored-products insects. The speed, simplicity, and parsimony of the bioassay derive from a single-step mixing of the test substance in aqueous solution with flour. Aliquots (100 μL) of the stirred suspension are then pipetted onto a polystyrene Petri dish using an Eppendorf pipettor and allowed to dry at room temperature overnight to produce uniform flour disks containing the test substance. After equilibration at 30 ± 1°C and 70 ± 5% relative humidity for 24 h, the disks are individually weighed and transferred to Petri dishes with weighed stored-products insects. After 3 days, the remainder of the disk and the living insects are weighed again for calculations of food consumption, utilization, growth, and mortality. Based on the flour-disk bioassay, the neem-based insecticide, Margosan-O®, significantly reduced consumption, growth, feeding, and dietary utilization in Cryptolestes ferrugineus (Stephens), Sitophilus oryzae (L.), and Tribolium castaneum (Herbst) in a dose-dependent manner. Margosan-O® also caused mortality, but the species differed widely in sensitivity, C. ferrugineus being the most sensitive and T. castaneum the least. The mortality of C. ferrugineus and S. oryzae was a consequence of both toxic and antifeedant (starvation) effects, but mortality of T. castaneum was caused entirely by its toxic action. Using a whole-kernel bioassay, it was found that Margosan-O® caused a dramatic reduction in the F1 progeny of all three species.

Résumé

Un test rapide et simple basé sur l’utilisation de disques de farine a été mis au point pour évaluer l’efficacité de substances biologiquement actives contre plusieurs espèces d’insectes des entrepôts. La commodité du système est reliée à la préparation en une seule étape d’une solution aqueuse contenant la substance et de la farine. Des doses égales (100 μL) de la suspension agitée sont ensuite déposées dans un vase de Petri de polystyrène au moyen d’une pipette Eppendorf et séchées à la température de la pièce toute la nuit, ce qui donne des disques uniformes de farine contenant les substances à tester. Après obtention de l’équilibre par exposition à une température de 30 ± 1°C et une humidité relative de 70 ± 5% pendant 24 h, les disques sont pesés et transférés chacun dans des vases de Pétri contenant des insectes d’entrepôt préalablement pesés. Après 3 jours, les restes des disques et les insectes encore vivants sont pesés de nouveau de façon à évaluer la quantité de nourriture consommée, son utilisation, la croissance et la mortalité. Les résultats de ces tests ont démontré que l’insecticide à base de margousier, le Margosan-O®, diminue significativement la consommation, la croissance, l’alimentation et le métabolisme chez Cryptolestes ferrugineus (Stephens), Sitophilus oryzae (L.), et Tribolium castaneum (Herbst) en fonction de la dose administrée. Le Margosan-O® est parfois aussi cause de mortalité, mais la sensibilité des espèces est très variable; C. ferrugineus est l’espèce la plus sensible et T. castaneum, la moins sensible. La mortalité de C. ferrugineus et de S. oryzae résulte à la fois des effets de la toxicité et de l’inhibition de l’alimentation (mort par inanition), mais la mortalité de T. castaneum est entièrement attribuable à l’action toxique du produit. Dans un test sur les grains de blé entiers, le Margosan-O® a entraîné une réduction importante de la progéniture F1 chez les trois espèces.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Ahmed, S., Grainge, M., Hylin, J.W., Mitchel, W.C., and Litsinger, J.A.. 1984. Some promising plant species for use as pest control agents under traditional farming systems. pp. 565580in Proceedings of the 2nd International Neem Conference, Rauischholzhausen.Google Scholar
Alonso-Amelot, M.E., Avila, J.L., Otero, L.D., Mora, F., and Wolf, B.. 1994. A new bioassay for testing plant extracts and pure compound using red flour beetle Tribolium castaneum Herbst. Journal of Chemical Ecology 20: 11611177.CrossRefGoogle Scholar
Anonymous. 1991. Statistix (3.5) User's Manual. Analytical Software, St. Paul, MN.Google Scholar
Arnason, J.T., Philogene, B.J.R., and Morand, P. (Eds.). 1989. Insecticides of Plant Origin. ACS Symposium Series 387. American Chemical Society, Washington, DC.Google Scholar
Baker, J.E., and Loschiavo, S.R.. 1987. Nutritional Ecology of Stored-Product Insects. pp. 321344in Slansky, F. Jr., and Rodriguez, J.G. (Eds.), Nutritional Ecology of Insects, Mites, and Spiders. John Wiley & Sons, Inc., New York, NY.Google Scholar
Dunkel, F.V., Sriharan, S., Niziyimana, E., and Serugendo, A.. 1990. Evaluation of neem kernel extract (Margosan-O) against major stored insect pests of beans and sorghum in Rwanda. pp. 527535in Fleurat-Lessard, F., and Ducom, P. (Eds.), Proceedings of the 5th International Working Conference of Stored-product Protection, Bordeaux, France.Google Scholar
Farrar, R.R. Jr., Barbour, J.D., and Kennedy, G.G.. 1989. Quantifying food consumption and growth in insects. Annals of the Entomological Society of America 82: 593598.CrossRefGoogle Scholar
Isman, M.B. 1994. Botanical insecticides. Pesticide Outlook 5(3): 2631.Google Scholar
Isman, M.B., Koul, O., Luczynski, A., and Kaminski, J.. 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. Journal of Agricultural Food Chemistry 38: 14061411.CrossRefGoogle Scholar
Jilani, G., Saxena, R.C., and Rueda, B.P.. 1988. Repellent and growth-inhibiting effects to turmeric oil, sweetflag oil, neem oil, and “Margosan-O” on red flour beetle (Coleoptera:Tenebrionidae). Journal of Economic Entomology 81: 12261230.CrossRefGoogle Scholar
Koul, O., and Isman, M.B.. 1991. Effects of azadirachtin on the dietary utilization and development of the variegated cutworm Peridroma saucia. Journal of Insect Physiology 37: 591598.CrossRefGoogle Scholar
Lewis, A.C., and van Emden, H.F.. 1986. Assays for insect feeding. pp. 96119in Miller, J.R., and Miller, T.A. (Eds.), Insect–Plant Interactions. Springer-Verlag, New York, NY.Google Scholar
Loschiavo, S.R. 1965. Methods for studying aggregation and feeding behaviour of the confused flour beetle, Tribolium confusum (Coleoptera:Tenebrionidae). Annals of the Entomological Society of America 58: 383388.CrossRefGoogle Scholar
Manuwoto, S., and Scriber, J.M.. 1982. Consumption and utilization of three maize genotypes by the Southern armyworm. Journal of Economic Entomology 75: 163167.CrossRefGoogle Scholar
McDonald, L.L., Guy, R.H., and Speirs, R.D.. 1970. Preliminary Evaluation of New Candidate Materials as Toxicant, Repellents and Attractants against Stored-product Insects. Marketing Research Report 882. Agriculture Research Service, USDA, Washington, DC.Google Scholar
Nawrot, J., and Harmatha, J.. 1994. Natural products as antifeedants against stored products insects. Postharvest News Information 5: 17N21N.Google Scholar
Schoonhoven, L.M. 1982. Biological aspects of antifeedants. Entomologia experimentalis et applicata 31: 5769.CrossRefGoogle Scholar
Talukder, F.A., and Howse, P.E.. 1993. Deterrent and insecticidal effects of extracts of Pithraj, Aphanamixis polystachya (Meliaceae), against Tribolium castaneum in storage. Journal of Chemical Ecology 19: 24632471.CrossRefGoogle ScholarPubMed
Talukder, F.A., and Howse, P.E.. 1994. Repellent, toxic, and food protectant effects of Pithraj, Aphanamixis polystachya extracts against pulse beetle, Callosobruchus chinensis in storage. Journal of Chemical Ecology 20: 899908.CrossRefGoogle ScholarPubMed
Waldbauer, G.P. 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229288.CrossRefGoogle Scholar
Xie, Y.S., Isman, M.B., Gunning, P., MacKinnon, S., Amason, J.T., Taylor, D.R., Sanchez, P., Hasbun, C., and Towers, G.H.N.. 1994. Biological activity of crude extracts of Trichilia species and the limonoid hirtin against lepidopteran larvae. Biochemical System Ecology 22: 129136.CrossRefGoogle Scholar
Xie, Y.S., Fields, P.G., and Isman, M.B.. 1995. Repellency and toxicity of azadirachtin and neem to three stored-product beetles. Journal of Economic Entomology 88: 10241031.CrossRefGoogle Scholar