Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T06:30:09.286Z Has data issue: false hasContentIssue false

Randomly amplified polymorphic DNA reveals fine-scale genetic structure in Pissodes strobi (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  31 May 2012

Kornelia G. Lewis
Affiliation:
Pacific Forestry Centre, Canadian Forest Service, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1Z4
Kermit Ritland*
Affiliation:
Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
Yousry A. El-Kassaby
Affiliation:
Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
John A. McLean
Affiliation:
Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
Jeffry Glaubitz
Affiliation:
Commonwealth Scientific and Industrial Research Organization, Forestry Division, PO Box 4008, Queen Victoria Terrace Act 2600, Canberra, Australia
John E. Carlson
Affiliation:
School of Forest Resources, Pennsylvania State University, University Park, Pennsylvania, USA 16802
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

To confirm patterns of diversity and differentiation found with isozymes and mitochondrial DNA, we surveyed 10 populations of the white pine weevil, Pissodes strobi (Peck), for randomly amplified polymorphic DNA (RAPD) markers. Four weevil populations were sampled from Sitka spruce, Picea sitchensis (Bong.) Carr (Pinaceae), five from the "interior" spruce of British Columbia [admixtures of white spruce, Picea glauca (Moench) Voss, and Engelmann spruce, Picea engelmanni (Parry)], and one from Jack pine, Pinus banksiana Lamb. (Pinaceae), in Ontario. In each population, 30–60 weevils were assayed with 10 RAPD primers, yielding 74 RAPD markers. Genetic analyses showed that populations from interior spruce and Jack pine formed a distinct complex; as well, Vancouver Island populations formed a distinct group within the Sitka populations. Levels of diversity, both in terms of polymorphic loci and expected heterozygosity, declined from east to west, supporting the contention that P. strobi originated in eastern North America and migrated west, and suggesting that biocontrol methods may be more effective on populations from Sitka spruce, owing to their reduced diversity. These results parallel an earlier isozyme study but, in contrast, the diversity differences and population relationships are demonstrated to be statistically significant, owing to both the much larger number of loci sampled and the attachment of statistical confidence intervals to estimates of diversity and differentiation.

Résumé

Pour confirmer les patterns de diversité et de différentiation obtenus antérieurement à l’étude des isozymes et de l’ADN mitochondrial, nous avons inventorié les marqueurs RAPD (amplification aléatoire de fragments d’ADN polymorphes) chez 10 populations du Charançon du pin blanc, Pissodes strobi (Peck). Quatre des populations provenaient d’épinettes de Sitka, Picea sitchensis (Bong.) Carr (Pinaceae), cinq d’épinettes « de l’intérieur » de la Colombie-Britannique [mélange d’épinettes blanches, Picea glauca (Moench) Voss, et d’épinettes d’Engelmann, Picea engelmanni (Parry)], et une du pin gris, Pinus banksiana Lamb. (Pinaceae) de l’Ontario. Dans chaque population, 30–60 charançons ont été testés à l’aide de 10 amorces RAPD et 74 marqueurs RAPD ont ainsi été découverts. Les analyses génétiques ont révélé que les populations vivant sur les épinettes de l’intérieur et sur les pins gris forment un complexe distinct; de même, les populations de l’île de Vancouver constituent un groupe particulier chez les épinettes de Sitka. L’importance de la diversité, mesurée tant en nombre de locus polymorphes qu’en héterozygotie attendue, décline d’est en ouest, ce qui appuie l’hypothèse selon laquelle P. strobi a son origine dans l’est de l’Amérique du Nord et a migré vers l’ouest; cela laisse croire aussi que les méthodes de contrôle biologique sont peut-être plus efficaces sur les populations qui vivent sur les épinettes de Sitka, parce qu’elles ont une diversité réduite. Ces résultats sont semblables à d’autres obtenus antérieurement par analyse des isozymes; en revanche, les différences de diversité et les relations entre les populations se sont avérées statistiquement significatives, d’une part, à cause de l’échantillonnage d’un plus grand nombre de locus, et d’autre part, parce que des intervalles de confiance ont pu être attribués aux estimations de la diversité et de la differentiation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I., Borden, J.H. 1982. Host selection by the white pine weevil, Pissodes strobi Peck: feeding bioassays using host and non-host plants. Canadian Journal of Forest Research 12: 6470CrossRefGoogle Scholar
Alfaro, R.I., Kiss, G., Fraser, R.G. 1994. The white pine weevil: biology, damage and management. British Columbia Forest Renewal Development Agreement Report 226. Victoria, British Columbia: Queens PressGoogle Scholar
Avise, J.C., Smith, M.H. 1977. Gene frequency comparisons between sunfish (Centrarchidae) populations at various stages of evolutionary divergence. Systematic Zoology 26: 319–35CrossRefGoogle Scholar
Ballinger-Crabtree, M.E., Black, W.C. IV, Miller, B.R. 1992. Use of genetic polymorphisms detected by the random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations. American Journal of Tropical Medicine and Hygiene 47: 893901CrossRefGoogle ScholarPubMed
Biotechnology Laboratories. 2000. Primer kits directory (services menu). [http://www.biotech.ubc.ca] (accessed 20 February 2001).Google Scholar
Boyce, T.M., Zwick, M.E., Aquadro, C.F. 1989. Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics 123: 825–36CrossRefGoogle ScholarPubMed
Felsenstein, J. 1982. How can we infer geography and history from gene frequencies? Journal of Theoretical Biology 96: 920CrossRefGoogle ScholarPubMed
Gara, R.I., Carlson, R.L., Hrutfiord, B.F. 1971. Influence of some physical and host factors on the behavior of the Sitka spruce weevil, Pissodes sitchensis, in Southwestern Washington. Annals of the Entomological Society of America 64: 467–71CrossRefGoogle Scholar
Harman, D.M., Kulman, H.M. 1966. A technique for sexing live white pine weevils, Pissodes strobi. Annals of the Entomological Society of America 59: 315–7CrossRefGoogle Scholar
Hedrick, P. 2000. Genetics of populations. 2nd ed. Sudbury, Massachusetts: Jones and BartlettGoogle Scholar
Hopkins, A.D. 1911. Technical papers on miscellaneous forest insects. I. Contributions toward a monograph of the bark-weevils of the genus Pissodes. pp 168in United States Department of Agriculture Bureau of Entomology Technical Series 20, Part 1Google Scholar
Langor, D.W., Sperling, F.A.H. 1995. Mitochondrial DNA variation and identification of bark weevils in the Pissodes strobi species group in western Canada (Coleoptera: Curculionidae). The Canadian Entomologist 127: 895911CrossRefGoogle Scholar
Langor, D.W., FAH, Sperling 1997. Mitochondrial DNA sequence divergence in weevils of the Pissodes strobi species complex (Coleoptera: Curculionidae). Insect Molecular Biology 6: 255–65CrossRefGoogle ScholarPubMed
Lewis, K.G. 1995. Genetic variation among populations of Pissodes strobi (white pine weevil) reared from Picea and Pinus hosts as inferred from RAPD markers. MSc thesis, University of British Columbia, VancouverGoogle Scholar
Lewis, K.G., El-Kassaby, Y.A., Alfaro, R.I., Barnes, S. 2000. Population genetic structure of Pissodes strobi (Coleoptera: Curculionidae) in British Columbia, Canada. Annals of the Entomological Society of America 93: 807–18CrossRefGoogle Scholar
Lu, R., Rank, G.H. 1996. Use of RAPD analyses to estimate population genetic parameters in the alfalfa leaf-cutting bee, Megachile rotundata. Genome 39: 655–63CrossRefGoogle ScholarPubMed
Lynch, M., Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91–9CrossRefGoogle ScholarPubMed
Nei, M. 1987. Molecular evolutionary genetics. New York: Columbia University PressCrossRefGoogle Scholar
Perring, T.M., Cooper, A.D., Rodriguez, R.J., Farrar, C.A., Bellows, T.S. Jr. 1993. Identification of a white fly species by genomic and behavioral studies. Science (Washington, DC) 259: 74–7CrossRefGoogle Scholar
Phillips, T.W., Lanier, G.N. 1985. Genetic divergence among populations of the white pine weevil, (Pissodes strobi) (Coleoptera: Curculionidae). Annals of the Entomological Society of America 78: 744–50CrossRefGoogle Scholar
Ritland, C., Ritland, K. 2000. DNA-fragment markers in plants. pp 208234in Baker, A.J. (Ed), Molecular methods in ecology. Oxford, United Kingdom: Blackwell Science Ltd.Google Scholar
Ritland, K. 1989 a. Genetic differentiation, diversity and inbreeding in the mountain monkeyflower (Mimulus caespitosus) of the Washington Cascades. Canadian Journal of Botany 67: 2017–24CrossRefGoogle Scholar
Ritland, K. 1989 b. Online source: computer program GD. [http://genetics.forestry.ubc.ca/ritland/programs.html] (accessed 20 February 2001).Google Scholar
Sullivan, C.R. 1959. The effect of light and temperature on the behaviour of adults of the white pine weevil, Pissodes strobi Peck. The Canadian Entomologist 91: 213–32CrossRefGoogle Scholar
Wallace, D.R., Sullivan, C.R. 1985. The white pine weevil, Pissodes strobi (Coleoptera: Curculionidae): a review emphasizing behavior and development in relation to physical factors. Proceedings of the Entomological Society of Ontario 116(Supplement): 3962Google Scholar
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531–5CrossRefGoogle ScholarPubMed