Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T02:25:18.376Z Has data issue: false hasContentIssue false

PROGRESS TOWARDS EARLY DETECTION OF POPULATION QUALITY DIFFERENCES IN BARK BEETLES (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

T. S. Sahota
Affiliation:
Canadian Forestry Service, Pacific Forest Research Centre, Victoria, British Columbia V8Z 1M5
F. G. Peet
Affiliation:
Canadian Forestry Service, Pacific Forest Research Centre, Victoria, British Columbia V8Z 1M5
P. H. Bartels
Affiliation:
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

Abstract

Samples of the Douglas-fir bark beetle, Dendroctonus pseudotsugae Hopk., taken from two different segments of the infested bole were different in gallery production, egg deposition, and yolk deposition. The same two groups were distinguished by comparing fat body cell nuclei taken before the onset of the reproductive period. Techniques for comparing nuclei involved creation and analysis of digital images of nuclei. These groups were indistinguishable from each other, at that stage, by any other known method. The two groups differed in total absorbance of Fuelgen-stained nuclei (DNA content) and nuclear area. Significance of these findings is discussed in relation to early detection of reproduction-related quality differences and population dynamics of bark beetles.

Résumé

Les dendroctones du Douglas, Dendroctonus pseudotsugae Hopk., prélevés dans deux sections différentes du tronc se sont révélés différents quant à la production de galeries, au dépôt d'oeufs et au dépôt de vitellus. Une distinction a été établie entre les deux groupes par comparaison des noyaux cellulaires des corps gras prélevés avant le déclenchement de la période de la reproduction. Les deux groupes étaient indistinguables à cette période par toutes les autres méthodes connues. Les techniques de comparaison des noyaux comportent la création et l'analyse d'images numériques. Les deux groupes se sont trouvés différents quant à la grandeur et à l'absorption complète des noyaux cellulaires (contenu ADN) teints avec la teinture Fuelgen. L'importance de ces résultats est examinée du point de vue de la détection précoce des différences qualitatives des dendroctones quant à la reproduction.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M. D. 1967. The effect of rearing temperatures on the size and fat content of the Douglas-fir beetle. Can. Ent. 99: 181187.Google Scholar
Bartels, P. H. 1981. Numerical evaluation of cytologic data, VII, multivariate significance tests. Anal. Quant. Cytol. 3: 18.Google Scholar
Bartels, P. H. and Olson, G. B.. 1980. Computer analysis of lymphocyte images. pp. 1–99 in Catsimpoolas, N. (Ed.), Methods of Cell Separation. Plenum Press, New York.Google Scholar
Berryman, A. A. 1974. Dynamics of bark beetle populations toward a general productivity model. Environ. Ent. 3: 579585.Google Scholar
Berryman, A. A. and Ashraf, M.. 1970. Effects of Abies grandis resin on the attack behaviour and brood survival of Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 102: 12291236.Google Scholar
Box, G. E. P. 1949. A general distribution theory for a class of likelihood criteria. Biometrika 36: 317346.Google Scholar
Cole, W. E. 1973. Crowding effects among single-age larvae of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ. Ent. 2: 285293.Google Scholar
Cook, L. M. 1961. Influence of larval environment on adult size and fecundity in the moth Panazia dominula L. Nature, Lond. 192: 282.Google Scholar
Coulson, R. N., Mayyasi, A. M., Foltz, J. L., Hain, F. P., and Martin, W. C.. 1976. Resource utilization by the southern pine beetle, Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 108: 353362.Google Scholar
Drooz, A. T. 1965. Some relationships between host, egg potential and pupal weight of the elm spanworm, Ennomos subsignarius (Lepidoptera: Geometridae). Ann. ent. Soc. Am. 58: 243245.Google Scholar
Farris, S. H., Sahota, T. S., Ibaraki, A., and Thomson, A. J.. 1982. Use of pectinase to dissociate plant nuclei for squash preparation. Effect of hydration procedures. Stain Technol. 57: 283288.Google Scholar
Hotelling, H. 1931. The generalization of Student's ratio. Ann. Math. Statist. 2: 360378.Google Scholar
McGhehey, J. H. 1971. Female size and egg production of the mountain pine beetle, Dendroctonus ponderosae Hopkins. Northern Forest Research Centre, Edmonton, Alberta. Information Rep. NOR-X-9. 18 pp.Google Scholar
McMullen, L. H. and Atkins, M. D.. 1961. Intraspecific competition as a factor in the natural control of the Douglas-fir beetle. Forest Sci. 7: 197203.Google Scholar
Millar, C. A. 1957. A technique for estimating the fecundity of natural populations of spruce budworm. Can. J. Zool. 35: 113.Google Scholar
Morrison, D. F. 1967. Multivariate Statistical Methods. McGraw Hill, New York. 120 pp.Google Scholar
Peet, F. G. and Sahota, T. S.. A computer assisted cell identification system. Anal. Quantit. Cytol. in press.Google Scholar
Reid, R. W. 1962. Biology of the mountain pine beetle, Dendroctonus ponderosae Hopkins, in the East Kootenay region of British Columbia. II. Behaviour in the host, fecundity and internal changes in the female. Can. Ent. 94: 605613.Google Scholar
Reid, R. W. 1963. Biology of the mountain pine beetle, Dendroctonus ponderosae Hopkins, in the East Kootenay region of British Columbia. III. Interaction between the beetle and its host, with emphasis on brood mortality and survival. Can. Ent. 95: 225238.Google Scholar
Sahota, T. S. and Ibaraki, A.. 1979. Effect of host tree activity on the rate of yolk protein deposition in Dendroctonus rufipennis (Coleoptera: Scolytidae). Can. Ent. 111: 13191323.Google Scholar
Sahota, T. S., Ibaraki, A., Heywood, F. G., Farris, S. H., and Van der Wereld, A. M.. 1981. Image enhancement for light microscopy. Stain Technol. 56: 361366.Google Scholar
Sahota, T. S. and Thomson, A. J.. 1979. Temperature induced changes in the rates of reproductive processes in Dendroctonus rufipennis (Coleoptera: Scolytidae). A new approach to detecting changes in population quality. Can. Ent. 111: 10691078.Google Scholar
Thomson, A. J. and Sahota, T. S.. 1981. Competition and population quality in Dendroctonus rufipennis (Coleoptera: Scolytidae). Can. Ent. 113: 177183.Google Scholar
Wagner, T. L., Fargo, W. S., Keeley, L. L., Coulson, R. N., and Cover, J. D.. 1982. Effects of sequential attack on gallery construction, oviposition and re-emergence by Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 114: 491502.Google Scholar
Wellington, W. G. 1976. Applying behavioural studies in entomological problems. pp. 8797 in Anderson, J. F. and Kaya, H. K. (Eds.), Perspectus in Forest Entomology. Academic Press, New York.Google Scholar
Wellington, W. G. 1977. Returning the insect to insect ecology: Some consequences for pest management. Environ. Ent. 6: 18.Google Scholar
Wellington, W. G. and Maelzer, D. A.. 1967. Effects of farnesyl methyl ether on the reproduction of western tent caterpillar, Malacosoma pluviale: Some physiological, ecological, and practical implications. Can. Ent. 99: 249263.Google Scholar
Wilks, S. S. 1932. Certain generalizations in the analysis of variance. Biometrika 24: 471494.Google Scholar