Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T06:25:18.975Z Has data issue: false hasContentIssue false

PREY PREFERENCES OF CALOSOMA SYCOPHANTA L. (COLEOPTERA: CARABIDAE) LARVAE AND RELATIONSHIP OF PREY CONSUMPTION TO PREDATOR SIZE

Published online by Cambridge University Press:  31 May 2012

Ronald M. Weseloh
Affiliation:
Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA06504

Abstract

In feeding choice tests, first- and second-instar larvae of Calosoma sycophanta L. preferred gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), pupae as prey but third-instar larvae most often consumed caterpillars. All beetle larvae preferred female pupae over male pupae. In non-choice feeding tests, older predator larvae consumed more gypsy moth fifth-instar larvae than the larger sixth-instar larvae, but the total weights of prey eaten in both cases were similar. First-instar larvae of C. sycophanta only partially consumed prey, and caterpillar size did not affect the total numbers eaten. Beetle larvae ate as many female gypsy moth pupae as male pupae, but larger larvae consumed greater weights of the former than of the latter. As a consequence, C. sycophanta larvae fed female pupae were larger than those provided with male pupae. However, for a given increase in size, third-instar larval beetles ingested the same weight of food no matter what the prey size was. Conversely, young beetle larvae seemed to require greater amounts of the body contents of large prey for a given size increase, probably because fluids from large prey were lost during predator attack. The information gained in this study may make it possible to use sizes of field-observed C. sycophanta larvae to predict numbers of prey they have killed.

Résumé

Lors de tests de préférence alimentaire, des larves des premier et deuxième stades larvaires de Calosoma sycophanta L. ont préféré les pupes de la spongieuse, Lymantria dispar (L.) (Lepidoptera : Lymantriidae), alors que les larves de troisième stade ont préféré les chenilles. Toutes les larves ont préféré les pupes femelles aux pupes mâles. Lors de tests d’alimentation sans choix, les larves plus âgées ont consommé plus de larves de stade cinq que de stade six (plus gros), mais le poids total consommé était similaire. Les larves du stade un de C. sycophanta ne consommaient les proies que partiellement, de sorte que la taille des chenilles n’a pas eu d’effet sur le nombre consommé. Les larves du calosome ont consommé autant de pupes femelles de la spongieuse que de pupes mâles, mais les grosses larves ont consommé un poids plus grand des premières que des secondes. Ainsi, les larves de C. sycophanta nourries de pupes femelles étaient plus grosses que celles nourries de pupes mâles. Cependant, pour une augmentation donnée de taille, les larves du stade trois du calosome ont consommé la même quantité de nourriture, quelle que soit la taille des proies. Inversement, les jeunes larves de calosome semblaient nécessiter une plus grande quantité des plus grosses proies pour réaliser une augmentation donnée de taille, probablement parce que les liquides internes s’écoulaient des grosses proies lors de l’attaque. L’information recueillie ici pourrait permettre d’utiliser la taille des larves de C. sycophanta collectées sur le terrain pour estimer le nombre de proies qu’elles ont éliminées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bess, H.A. 1961. Population ecology of the gypsy moth Porthetria dispar L. (Lepidoptera: Lymantriidae). Conn. Agric. Exp. Stn. New Haven Bull. 645. 43 pp.Google Scholar
Burgess, A.F. 1911. Calosoma sycophanta: its life history, behavior, and successful colonization in New England. U.S. Dep. Agric. Bur. Ent. Bull. 101. 94 pp.Google Scholar
Campbell, R.W. 1967. The analysis of numerical change in gypsy moth populations. For. Sci. Monog. 15. 33 pp.Google Scholar
Campbell, R.W. 1975. The gypsy moth and its natural enemies. U.S. For. Serv. Agric. Inf. Bull. 381. 27 pp.Google Scholar
Ostle, B. 1963. Statistics in Research. Iowa State University Press, Ames. 585 pp.Google Scholar
Snedecor, G.W., and Cochran, W.G.. 1967. Statistical Methods. Iowa State University Press, Ames. 593 pp.Google Scholar
Vasic, K. 1972. A Biological Method of Control of Lymantria dispar L. and Diprion pini L. Institute of Forestry and Wood Industry, Belgrade, Yugoslavia. 134 pp.Google Scholar
Weseloh, R.M. 1985 a. Changes in population size, dispersal behavior, and reproduction of Calosoma sycophanta (Coleoptera: Carabidae), associated with changes in gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), abundance. Environ. Ent. 14: 370377.CrossRefGoogle Scholar
Weseloh, R.M. 1985 b. Predation by Calosoma sycophanta L. (Coleoptera: Carabidae): evidence for a large impact on gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae), pupae. Can. Ent. 117: 11171126.CrossRefGoogle Scholar