Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:01:06.071Z Has data issue: false hasContentIssue false

Predicting the seasonal development of the yellowheaded spruce sawfly (Hymenoptera: Tenthredinidae) in eastern Canada

Published online by Cambridge University Press:  02 April 2012

Jacques Régnière*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, Quebec, Canada G1V 4C7
Dan Lavigne
Affiliation:
New Brunswick Department of Natural Resources, Hugh John Flemming Forestry Centre, 1350 Regent Street, Fredericton, New Brunswick, Canada E3C 2G6
Alain Dupont
Affiliation:
Société de protection des forêts contre les insectes et maladies, 1780, rue Semple, Québec, Québec, Canada G1N 4B8
Nelson Carter
Affiliation:
New Brunswick Department of Natural Resources, Hugh John Flemming Forestry Centre, 1350 Regent Street, Fredericton, New Brunswick, Canada E3C 2G6
*
1Corresponding author (e-mail: [email protected]).

Abstract

Degree-day phenology models for the yellowheaded spruce sawfly, Pikonema alaskensis (Rohwer), were developed from data sets collected in infested plantations of black spruce, Picea mariana (Mill.), and white spruce, P. glauca (Moench) Voss, in New Brunswick and Quebec, Canada, between 1995 and 1999. The models describe the relationships between degree-day accumulation (above −1 °C, from 1 April) and cumulative adult emergence, capture in pheromone traps, the dates of appearance of first adult, egg, and larva, and the relative frequency of successive larval stages. The models predict adult emergence with a precision of ±2 days and male catch in pheromone traps with a precision of ±1.6 days. The first adult, first egg, and first larva occurred after 527 ± 42, 660 ± 52, and 725 ± 18 degree-days above –1 °C, respectively, and the dates of these events are predicted within ±1.8 days. The dates of 50% occurrence of the successive instars are predicted within 4.5 days of observed dates, and the date of peak 2nd instar is predicted within ±3.6 days.

Résumé

Des modèles phénologiques de degrés-jours pour la tenthrède à tête jaune de l'épinette, Pikonema alaskensis (Rohwer), ont été ajustés à partir de données récoltées dans des plantations infestées d'épinette noire, Picea mariana (Mill.), et blanche, P. glauca (Moench) Voss, au Nouveau-Brunswick et au Québec (Canada) entre 1995 et 1999. Les modèles décrivent la relation entre l'accumulation de degrés-jours au dessus de –1 °C à partir du 1er avril, et l'émergence cumulative des adultes, la capture des mâles dans des pièges à phéromones, l'apparition du premier adulte, œuf ou larve, et la fréquence relative des stades successifs de développement larvaire. Les modèles permettent de prédire l'émergence des adultes avec une précision de ±2 jours, et la capture des mâles dans les pièges à phéromones avec une précision de ±1.6 jours. L'apparition du premier adulte, œuf et larve s'est produite après 527 ± 42, 660 ± 52 et 725 ± 18 degrés-jours au dessus de –1 °C, respectivement, et les dates de ces événements sont prédites à ±1.8 près. Les dates auxquelles 50 % des individus atteignent chaque stade larvaire successif sont prédites à ±4.5 jours des dates observées, et la date du pic du 2e stade larvaire est prédite avec une précision de ±3.6 jours.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology, 5: 388396.CrossRefGoogle Scholar
Bartelt, R.J., Kulman, H.M., and Jones, R.L. 1981. Effects of temperature on diapausing cocoons of the yellowheaded spruce sawfly, Pikonema alaskensis. Annals of the Entomological Society of America, 74: 472477.CrossRefGoogle Scholar
Bartelt, R.J., Jones, R.L., and Kulman, H.M. 1982. Hydrocarbon components of the yellowheaded spruce sawfly sex pheromone: a series of (Z,Z)-9,19 dienes. Journal of Chemical Ecology, 8: 95114.CrossRefGoogle Scholar
Bradley, G.A. 1945. Tenthrède à tête jaune de l'épinette, Pikonema alaskensis. Agriculture Canada, Division de l'Entomologie, Bulletin d'Entomologie Forestière, 1: 3.Google Scholar
Bradley, G.A. 1951. Notes on the parasitism of the yellow-headed spruce sawfly, Pikonema alaskensis (Roh.) (Hymenoptera: Tenthredinidae). The Canadian Entomologist, 83: 130131.CrossRefGoogle Scholar
Candy, S.G. 1991. Modeling insect phenology using ordinal regression and continuation ratio models. Environmental Entomology, 20: 190195.CrossRefGoogle Scholar
Candy, S.G. 2003. Predicting time to peak occurrence of insect life-stages using regression models calibrated from stage-frequency data and ancillary stage-mortality data. Agricultural and Forest Entomology, 5: 4349.CrossRefGoogle Scholar
Cook, J.L. 1976. Soil and site influences affecting the defoliation patterns of the yellowheaded spruce sawfly. M.Sc. thesis, University of Minnesota, St. Paul, Minnesota.Google Scholar
Daviault, L. 1948. La tenthrède à tête jaune de l'épinette. Ministère des Terres et Forêts du Québec, Bureau d'Entomologie, Circulaire 11.Google Scholar
de Groot, P. 1995. Yellowheaded spruce sawfly, Pikonema alaskensis. In Forest insect pests in Canada. Edited by Armstrong, J.A. and Ives, W.G.H.. Natural Resources Canada, Canadian Forest Service, Ottawa, Ontario.Google Scholar
Duda, E.J. 1953. The yellow-headed spruce sawfly in Maine. M.Sc. thesis, University of Massachusetts, Amherst, Massachusetts.Google Scholar
Eller, F.J., Bartelt, R.J., Kulman, H.M., and Jones, R.L. 1989. Interaction of prechill and chill durations on diapausing prepupal larvae of the yellowheaded spruce sawfly (Hymenoptera: Tenthredinidae) and associated parasitoids. Annals of the Entomological Society of America, 82: 361367.CrossRefGoogle Scholar
Gignac, M. 2000. Comparaison de la régression spatiale et du krigeage avec dérive pour interpoler des extrants de modéles de simulation de développement d'insectes au Québec en fonction de l'échelle, de la topographie et de l'influence maritime. M.Sc. thesis, Université Laval, Québec, Quebec.Google Scholar
Houseweart, M.W., and Kulman, H.M. 1976 a. Life tables of the yellowheaded spruce sawfly, Pikonema alaskensis (Rohwer) (Hymenoptera: Tenthredinidae) in Minnesota. Environmental Entomology, 5: 859867.CrossRefGoogle Scholar
Houseweart, M.W., and Kulman, H.M. 1976 b. Fecundity and parthenogenesis of the yellowheaded spruce sawfly, Pikonema alaskensis. Annals of the Entomological Society of America, 69: 748750.CrossRefGoogle Scholar
Houseweart, M.W., Kulman, H.M., Thompson, L.C., and Hansen, R.W. 1984. Parasitoids of two spruce sawflies in the genus Pikonema (Hymenoptera: Tenthredinidae). University of Maine, Cooperative Forestry Research Unit, Research Bulletin 4.Google Scholar
Jobin, L.J., and Coulombe, C. 1988. The Multi-Pher® insect trap. Forestry Canada, Quebec Region, Laurentian Forestry Centre, Sainte-Foy, Quebec, Information Leaflet CFL-24E.Google Scholar
Johns, R., Ostaff, D., and Quiring, D. 2006. Relationships between yellowheaded spruce sawfly, Pikonema alaskensis, density and defoliation on juvenile black spruce. Forest Ecology and Management, 228: 5160.CrossRefGoogle Scholar
Katovich, S.A., McCullough, D.G., and Haack, R.A. 1995. Yellowheaded spruce sawfly — its ecology and management. USDA Forest Service, North Central Forest Experiment Station, General Technical Report NC-179.CrossRefGoogle Scholar
le Cocq, T.L., Quiring, D., Verrez, A., and Park, Y.S. 2005. Genetically based resistance of black spruce (Picea mariana) to the yellowheaded spruce sawfly (Pikonema alaskensis). Forest Ecology and Management, 215: 8490.CrossRefGoogle Scholar
Minnesota Department of Natural Resources. 1992. Yellow-headed spruce sawfly. Minnesota Department of Natural Resources, Division of Forestry, St. Paul, Minnesota.Google Scholar
Mitchener, A.V. 1931. The brown-headed spruce sawfly Pachynematus ocreatus (Harr.) Marlatt. Annual Report of the Entomological Society of Ontario, 62: 5761.Google Scholar
Morse, B.W., and Kulman, H.M. 1984. Effect of white spruce release on subsequent defoliation by yellowheaded spruce sawfly, Pikonema alaskensis (Hymenoptera: Tenthredinidae). The Great Lakes Entomologist, 17: 235237.Google Scholar
Morse, B.W., and Kulman, H.M. 1985. Monitoring damage by yellowheaded spruce sawflies with sawfly and parasitoid pheromones. Environmental Entomology, 14: 131133.CrossRefGoogle Scholar
Morse, B.W., and Kulman, H.M. 1986. A method of hazard-rating white spruce plantations for yellowheaded spruce sawfly defoliation. Northern Journal of Applied Forestry, 3: 104105.CrossRefGoogle Scholar
Morse, B.W., Eller, F.J., and Kulman, H.M. 1984. Forecasting emergence of adult yellowheaded spruce sawflies (Hymenoptera: Tenthredinidae). Environmental Entomology, 13: 895897.CrossRefGoogle Scholar
Morton, S.S. 1948. Comparative study of the morphology of larval and adult stages of two closely related spruce sawflies: Pikonema alaskensis Roh., and Pikonema dimmockii Cress. M.Sc. thesis, University of Toronto, Toronto, Ontario.Google Scholar
Nash, R.W. 1939. The yellow-headed spruce sawfly in Maine. Journal of Economic Entomology, 32: 330334.CrossRefGoogle Scholar
Pointing, P.J. 1957. Studies on the comparative ecology of two sawflies Pikonema alaskensis Roh., and Pikonema dimmockii Cress. (Tenthredinidae, Hymenoptera). Ph.D. thesis, University of Toronto, Toronto, Ontario.Google Scholar
Quiring, D.T. 1994. Influence of inter-tree variation in time of budburst of white spruce on herbivory and the behaviour and survivorship of Zeiraphera canadensis. Ecological Entomology, 19: 1725.CrossRefGoogle Scholar
Rau, D.E. 1976. Parasites and local distribution of cocoons of the yellowheaded spruce sawfly. M.Sc. thesis, University of Minnesota, St. Paul, Minnesota.Google Scholar
Rau, D.E., Houseweart, M.W., and Kulman, H.M. 1979. Distribution of cocoons of the yellowheaded spruce sawfly. Environmental Entomology, 8: 340343.CrossRefGoogle Scholar
Régnière, J., and Griffiths, K.J. 1992. La modélisation en lutte biologique: un exemple d'utilisation dans l'étude du synchronisme des cycles vitaux d'un parasitoïde et de son hôte. In La lutte biologique. Edited by Vincent, C., Coderre, D., and Morin, G.. Boucherville, Quebec, Canada.Google Scholar
Ross, H.H. 1938. The nearctic species of Pikonema, a genus of spruce sawflies (Hymenoptera, Tenthredinidae). Proceedings of the Entomological Society of Washington, 40: 1720.Google Scholar
Schoenfelder, T.W., Houseweart, M.W., Thompson, L.C., Kulman, H.M., and Martin, F.B. 1978. Insect and mammal predation of yellowheaded spruce sawfly cocoons (Hymenoptera: Tenthredinidae). Environmental Entomology, 7: 711713.CrossRefGoogle Scholar
Shenefelt, R.D., and Benjamin, D.M. 1955. Insects of Wisconsin forests. University of Wisconsin, Madison, Wisconsin, Circular No. 500.Google Scholar
Thompson, L.C., and Kulman, H.M. 1980. Parasites of the yellowheaded spruce sawfly, Pikonema alaskensis (Hymenoptera, Tenthredinidae) in Maine and Nova Scotia. The Canadian Entomologist, 112: 2529.CrossRefGoogle Scholar
Turgeon, J.J. 1986. The phenological relationship between the larval development of the spruce budmoth, Zeiraphera canadensis (Lepidoptera: Tortricidae), and white spruce in Northern New Brunswick. The Canadian Entomologist, 118: 345350.CrossRefGoogle Scholar
VanDerwerker, G.K., and Kulman, H.M. 1974. Stadium and sex determination of yellowheaded spruce sawfly larvae, Pikonema alaskensis. Annals of the Entomological Society of America, 67: 2931.CrossRefGoogle Scholar
Wilson, L.F. 1962. Yellow-headed spruce sawfly. USDA Forest Service, Washington, D.C., Forest Pest Leaflet 69.Google Scholar