Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T12:25:13.287Z Has data issue: false hasContentIssue false

Population stability of a tree-galling aphid, Baizongia pistaciae, at three spatial scales

Published online by Cambridge University Press:  04 May 2012

Robert J. Lamb*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Patricia A. MacKay
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
D. Wool
Affiliation:
Department of Zoology, Tel Aviv University, Tel Aviv 69987, Israel
*
1Corresponding author (e-mail: [email protected]).

Abstract

The population stability of Baizongia pistaciae (Linnaeus) (Hemiptera: Aphididae) on its primary host, the tree Pistacia palaestina Boissier (Anachardiaceae), was investigated using 17–20 years of data from a study of gall abundance on individual trees in Israel. Abundance varied by at least an order of magnitude among adjacent trees, among locations, and among years. Stability was quantified for the alternate-year cohorts as population variability (PV) and persistence, at three spatial scales. PV (a proportion between 0 and 1) was similar between cohorts and declined with population scale – subpopulation (a tree): 0.676 ± 0.092 (±1 SD, n = 40); population: 0.581 ± 0.098 (±1 SD, n = 6); region: 0.424 (0.345 and 0.503, n = 2). Persistence (proportion of years that galls were present) was usually near 0.9, but 0.1 for some subpopulations, and 1.0 at the population and regional scales. Although protected within large galls on long-lived trees, the PV of B. pistaciae was similar to that of native, free-living aphid species on more ephemeral herbaceous hosts, but lower than for introduced aphid species. Persistence of B. pistaciae decreased as abundance decreased but not as PV increased. PV did not increase with the length of the study period; and declined with increasing population scale, because abundance was not synchronised among subpopulations or populations. PV was similar among populations, suggesting this parameter is characteristic of the species, although positive correlations between cohorts on a tree showed that PV was affected by the site-specific tree–grass habitats in which this species lives.

Résumé

Nous avons examiné la stabilité de la population de Baizongia pistaciae (Linnaeus) (Hemiptera: Aphididae) sur son hôte primaire Pistacia palaestina Boissier (Anachardiaceae) à l'aide d'une série de 17–20 ans de données provenant d'une étude de l'abondance des galles sur des arbres individuels en Israël. L'abondance varie par au moins un facteur de 10 entre les arbres adjacents, les sites et les années. Nous avons mesuré la stabilité des cohortes à tous les deux ans en termes de variabilité et de persistance de la population, à trois échelles spatiales. La variabilité de la population (PV, une proportion entre 0 et 1) est semblable entre les cohortes et diminue en fonction de l’échelle de la population – sous-population (un arbre): 0,676 ± 0,092 (±ET, n = 40); population: 0,581 ± 0,098 (±ET, n = 6), région: 0,424 (0,345 et 0,503, n = 2). La persistance (proportion des années pendant lesquelles les galles sont présentes) est généralement près de 0,9, mais elle est de 0,1 dans certaines sous-populations et de 1,0 aux échelles de la population et de la région. Malgré la protection offerte par les galles de grande taille sur des arbres à vie longue, B. pistachiae a PV semblable à celles d'espèces de pucerons indigènes à vie libre sur des plantes hôtes herbacées plus éphémères, mais inférieure à celle des espèces de pucerons introduites. La persistance de B. pistaciae décroît en même temps que l'abondance, mais non lorsque PV augmente. La variabilité de la population n'augmente pas en fonction de la durée de l’étude; elle décline lorsque l’échelle de la population augmente, parce que l'abondance n'est pas synchrone entre les sous-populations ni les populations. PV est semblable entre les populations, ce qui laisse croire que ce paramètre est une caractéristique de l'espèce, bien que des corrélations positives entre les cohortes sur un même arbre montrent que PV est affectée par les habitats d'arbres et d'herbes spécifiques aux sites dans lesquels vit cette espèce.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Connell, J.H., Sousa, W.P. 1983. On the evidence needed to judge ecological stability or persistence. The American Naturalist, 121: 789824.CrossRefGoogle Scholar
Grimm, V., Wissel, C. 1997. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109: 323334.CrossRefGoogle Scholar
Heath, J.P. 2006. Quantifying temporal variability in population abundances. Oikos, 115: 573581.CrossRefGoogle Scholar
Inchausti, P., Halley, J. 2002. The long-term temporal variability and spectral colour of animal populations. Evolutionary Ecology Research, 4: 10331048.Google Scholar
Inchausti, P., Halley, J. 2003. On the relation between temporal variability and persistence time in animal populations. Journal of Animal Ecology, 72: 899908.CrossRefGoogle Scholar
Kurzfeld-Zexer, L., Wool, D., Inbar, M. 2010. Modification of tree architecture by a gall-forming aphid. Trees, 24: 1318.CrossRefGoogle Scholar
Lamb, R.J., MacKay, P.A. 2010. Stability of natural populations of an aphid, Uroleucon rudbeckiae, at three spatial scales. The Canadian Entomologist, 142: 3651.CrossRefGoogle Scholar
Lamb, R.J., MacKay, P.A., Alyokhin, A. 2011. Population variability and persistence of three aphid pests of potatoes over 60 years. The Canadian Entomologist, 143: 91101.CrossRefGoogle Scholar
Lawton, J.H. 1988. More time means more variation. Nature, 334: 563.CrossRefGoogle Scholar
Martinez, J.-J.I., Mokady, O., Wool, D. 2005. Patch size and patch quality of gall-inducing aphids in a mosaic landscape in Israel. Landscape Ecology, 20: 10131024.CrossRefGoogle Scholar
Pimm, S.L., Redfearn, A. 1988. The variability of population densities. Nature, 334: 613614.CrossRefGoogle Scholar
Schoener, T.W., Spiller, D.A. 1987. High population persistence in a system with high turnover. Nature, 330: 474477.CrossRefGoogle Scholar
SYSTAT. 2009. SYSTAT 13: Statistics I. SYSTAT Software Inc., Chicago, United States of America.Google Scholar
Taylor, L.R., Woiwod, I.P. 1980. Temporal stability as a density-dependent species characteristic. Journal of Animal Ecology, 49: 209224.CrossRefGoogle Scholar
Wool, D. 1990. Regular alternation of high and low population size of gall-forming aphids: analysis of ten years of data. Oikos, 57: 7379.CrossRefGoogle Scholar
Wool, D. 2002. Herbivore abundance is independent of weather? A 20-year study of a galling aphid Baizongia pistaciae (Homoptera: Aphidoidea). Population Ecology, 44: 281291.CrossRefGoogle Scholar
Wool, D. 2004. Galling aphids: specialization, biological complexity, and variation. Annual Review of Entomology, 49: 175192.CrossRefGoogle ScholarPubMed