Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:33:57.619Z Has data issue: false hasContentIssue false

POPILLIA JAPONICA (COLEOPTERA: SCARABAEIDAE): A MATHEMATICAL MODEL OF OVIPOSITION IN HETEROGENEOUS AGROECOSYSTEMS

Published online by Cambridge University Press:  31 May 2012

Jacques Régnière
Affiliation:
Department of Entomology, North Carolina State University, Raleigh 27650
Robert L. Rabb
Affiliation:
Department of Entomology, North Carolina State University, Raleigh 27650
R. E. Stinner
Affiliation:
Department of Entomology, North Carolina State University, Raleigh 27650

Abstract

A mathematical model is developed which simulates the effect of the number of eggs in females, food source, and soil conditions, on ovogenesis and oviposition of Japanese beetle populations. The number of eggs in females is used as the state indicator, and simulated trends are compared to field data. Potential applications in pest management are discussed.

Résumé

Un modèle mathématique est décrit, simulant l’effet du nombre d’oeufs matures contenus dans les voies génitales des femelles, de la source de nourriture, et de conditions édaphiques, sur l’ovogènese et l’oviposition d’une population de scarabées japonais. La variable indicatrice utilisée pour fins de comparaisons avec des populations naturelles est le nombre d’oeufs dans les femelles. Certaines applications en amenagement sont mentionnées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chapman, R. F. 1971. The Insects; Structure and Function. Elsevier, N.Y.2nd ed.Google Scholar
Fleming, W. E. 1969. Attractants for the Japanese beetle. Tech. Bull. U.S. Dep. Agric. 1399.Google Scholar
Fleming, W. E. 1972. Biology of the Japanese beetle. Tech. Bull. U.S.Dep. Agric. 1449.Google Scholar
Fleming, W. E. 1976. Integrating control of the Japanese beetle: A historical review. Tech. Bull. U.S. Dep. Agric. 1545.Google Scholar
Gaylor, M. G. and Frankie, G. W.. In press. The relationship of rainfall to adult flight activity; and of soil moisture to oviposition behavior and egg and first instar survival in Phyllophaga crinita. Environ. Ent.Google Scholar
Hawley, I. M. 1949. The effect of summer rainfall on Japanese beetle populations. Jl N.Y. ent. Soc. 57: 167176.Google Scholar
Jones, J. W., Stinner, R. E., Bradley, J. R. Jr., Sowell, R. S., and Bachelor, J. S.. 1975. Female boll weevil oviposition and feeding processes: A simulation model. Environ. Ent. 4: 815821.CrossRefGoogle Scholar
Langford, G. S., Crosthwait, S. L., and Whittington, F. B.. 1940. The value of traps in Japanese beetle control. J. econ. Ent. 33: 317320.Google Scholar
Morrill, W. C. and Dobson, J. W.. 1978. Japanese beetle: Adult emergence, population trends and distribution in Georgia. J. Georgia ent. Soc. 13: 5055.Google Scholar
Wigglesworth, V. B. 1972. The Principles of Insect Physiology. Methuen, London. 7th ed.Google Scholar