Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T15:35:39.376Z Has data issue: false hasContentIssue false

Plant module size and attack by the goldenrod spindle-gall moth

Published online by Cambridge University Press:  02 April 2012

Stephen B. Heard*
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 1R3
Graham H. Cox
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 1R3
*
1Corresponding author (e-mail: [email protected]).

Abstract

Larvae of the gall-inducing moth Gnorimoschema gallaesolidaginis (Riley) (Lepidoptera: Gelechiidae) attack ramets of Solidago altissima L. and S. gigantea Aiton (Asteraceae), initiating stem galls early in ramet growth. We examined the relationship between ramet size (as an indicator of plant vigour) and galling rate over 3 years at a field site in Toronto, Ontario, Canada. We marked Solidago ramets along line transects, measured their stem diameter, and recorded their fate (galled or ungalled) during the season. For S. altissima, galls were numerous enough for analysis in 2 years, and the frequency of galling increased monotonically with ramet stem diameter in both years. For S. gigantea, galls were numerous enough for analysis in all 3 years, but attack rate - stem diameter relationships were complex. In 2004 the galling frequency peaked at intermediate stem diameter, but in 2005 the galling frequency increased monotonically with stem diameter (and in 2006 the nonsignificant trend was similar). Overall, our data are most consistent with the plant-vigour hypothesis, but the 2004 data for S. gigantea lend some support to the suggestion that herbivore attack might sometimes be most intense on intermediate-sized modules.

Résumé

Les larves du papillon de nuit gallicole Gnorimoschema gallaesolidaginis (Riley) (Lepidoptera: Gelechiidae) attaquent les ramilles de Solidago altissima L. et de S. gigantea Aiton (Asteraceae), ce qui provoque la formation de galles sur la tige tôt dans la croissance des ramilles. Nous avons examiné la relation entre la taille de la ramille (comme indicateur de la vigueur de la plante) et le taux de formation des galles pendant trois années à un site de terrain de Toronto, Canada. Nous avons marqué des ramilles de Solidago le long de lignes de transect, mesuré le diamètre des tiges et déterminé leur sort (avec ou sans galles) au cours de la saison. Chez S. altissima, les galles étaient assez abondantes durant deux des années pour permettre l’analyse; la fréquence de formation des galles s’est accrue de façon monotone en fonction du diamètre des tiges pendant les deux années. Chez S. gigantea, les galles étaient assez abondantes durant les trois années, mais les relations entre le taux d’attaque et le diamètre de la tige étaient complexes. En 2004, le taux de formation des galles a atteint un maximum aux tailles intermédiaires des tiges, mais en 2005 le taux de formation de galles a augmenté de manière monotone en fonction du diamètre de la tige (et en 2006 la tendance était semblable mais non significative). Dans leur ensemble, nos données s’accordent avec l’hypothèse de la vigueur de la plante; cependant, les données de 2004 chez S. gigantea apportent un certain appui aux propositions selon lesquelles l’attaque des herbivores peut quelquefois être plus intense sur les modules de taille intermédiaire.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, W.G., and Weis, A.E. 1997. Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Princeton University Press, Princeton, New Jersey.Google Scholar
Abrahamson, W.G., McCrea, K.D., Whitwell, A.J., and Vernieri, L.A. 1991. The role of phenolics in goldenrod ball gall resistance and formation. Biochemical Systematics and Ecology, 19: 615622.CrossRefGoogle Scholar
Beck, E.G. 1953. The nature of the stimulus in the Solidago gall induced by the larva of Gnorimoschema gallaesolidaginis. Brookhaven Symposia in Biology No. 6. pp. 235251.Google Scholar
Bjorkman, C. 1998. Opposite, linear and non-linear effects of plant stress on a galling aphid. Scandinavian Journal of Forest Research, 13: 177183.CrossRefGoogle Scholar
Bosio, C.F., McCrea, K.D., Nitao, J.K., and Abrahamson, W.G. 1990. Defense chemistry of Solidago altissima — effects on the generalist herbivore Trichoplusia ni (Lepidoptera, Noctuidae). Environmental Entomology, 19: 465468.CrossRefGoogle Scholar
Cooper-Driver, G.A., and LeQuesne, P.W. 1987. Diterpenes as insect antifeedants and growth inhibitors — role in Solidago species. In Allelochemicals: role in agriculture and forestry. Edited by Waller, G.R.. American Chemical Society Symposium 330, American Chemical Society, Washington, D.C. pp. 535550.Google Scholar
Eber, S. 2004. Bottom-up density regulation in the holly leaf-miner Phytomyza ilicis. Journal of Animal Ecology, 73: 948958.CrossRefGoogle Scholar
Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20: 12811328.CrossRefGoogle ScholarPubMed
Gripenberg, S., Morrien, E., Cudmore, A., Salminen, J.P., and Roslin, T. 2007. Resource selection by female moths in a heterogeneous environment: what is a poor girl to do? Journal of Animal Ecology, 76: 854865.CrossRefGoogle Scholar
Halpern, S.L., and Underwood, N. 2006. Approaches for testing herbivore effects on plant population dynamics. Journal of Applied Ecology, 43: 922929.CrossRefGoogle Scholar
Halverson, K.L., Heard, S.B., Nason, J.D., and Stireman, J.O., III. 2008. Differential attack on diploid, tetraploid, and hexaploid Solidago altissima L. by five insect gallmakers. Oecologia, 154: 755761.CrossRefGoogle ScholarPubMed
Hartnett, D.C., and Abrahamson, W.G. 1979. The effects of stem gall insects on life history patterns in Solidago canadensis. Ecology, 60: 910917.CrossRefGoogle Scholar
Heard, S.B., and Remer, L.C. 2008. Travel costs, oviposition behaviour and the dynamics of insect–plant systems. Theoretical Ecology, 1: 179188.CrossRefGoogle Scholar
Heard, S.B., Stireman, J.O. III, Nason, J.D., Cox, G.H., Kolacz, C.R., and Brown, J.M. 2006. On the elusiveness of enemy-free space: spatial, temporal, and host-plant-related variation in parasitoid attack rates on three gallmakers of goldenrods. Oecologia, 150: 421434.CrossRefGoogle ScholarPubMed
Horner, J.D., and Abrahamson, W.G. 1992. Influence of plant genotype and environment on oviposition preference and offspring survival in a gall-making herbivore. Oecologia, 90: 323332.CrossRefGoogle Scholar
Hull-Sanders, H.M., Clare, R., Johnson, R.H., and Meyer, G.A. 2007. Evaluation of the evolution of increased competitive ability (EICA) hypothesis: loss of defense against generalist but not specialist herbivores. Journal of Chemical Ecology, 33: 781799.CrossRefGoogle Scholar
Johnson, R.H., Hull-Sanders, H.M., and Meyer, G.A. 2007. Comparison of foliar terpenes between native and invasive Solidago gigantea. Biochemical Systematics and Ecology, 35: 821830.CrossRefGoogle Scholar
Kalemba, D., Marschall, H., and Bradesi, P. 2001. Constituents of the essential oil of Solidago gigantea Ait. (giant goldenrod). Flavour and Fragrance Journal, 16: 1926.3.0.CO;2-U>CrossRefGoogle Scholar
Larson, K.C., and Whitham, T.G. 1997. Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia, 109: 575582.CrossRefGoogle ScholarPubMed
Leiby, R.W. 1922. Biology of the goldenrod gall-maker Gnorimoschema gallaesolidaginis. Journal of the New York Entomological Society, 30: 8195.Google Scholar
Maron, J.L., and Crone, E.E. 2006. Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society of London B Biological Sciences, 273: 25752584.CrossRefGoogle ScholarPubMed
McConnachie, A.J., Hill, M.P., Byrne, M.J., and de Wit, M.P. 2003. Economic evaluation of the successful biological control of Azolla filiculoides in South Africa. Biological Control, 28: 2532.CrossRefGoogle Scholar
McKinnon, M.L., Quiring, D.T., and Bauce, E. 1999. Influence of tree growth rate, shoot size and foliar chemistry on the abundance and performance of a galling adelgid. Functional Ecology, 13: 859867.CrossRefGoogle Scholar
Miller, W.E. 2000. A comparative taxonomic – natural history study of eight Nearctic species of Gnorimoschema that induce stem galls on Asteraceae, including descriptions of three new species (Lepidoptera: Gelechiidae). Entomological Society of America, Lanham, Maryland.CrossRefGoogle Scholar
Nason, J.D., Heard, S.B., and Williams, F.R. 2002. Host associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae). Evolution, 56: 14751488.Google ScholarPubMed
Price, P.W. 1991. The plant vigor hypothesis and herbivore attack. Oikos, 62: 244251.CrossRefGoogle Scholar
Price, P.W. 2003. Macroevolutionary theory on macorecological patterns. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Price, P.W., Ohgushi, T., Roininen, H., Ishihara, M., Craig, T.P., Tahvanainen, J., and Ferrier, S.M. 2004. Release of phylogenetic constraints through low resource heterogeneity: the case of gall-inducing sawflies. Ecological Entomology, 29: 467481.CrossRefGoogle Scholar
Quiring, D.T., Flaherty, L., Johns, R., and Morrison, A. 2006. Variable effects of plant module size on abundance and performance of galling insects. In Galling arthropods and their associates: ecology and evolution. Edited by Ozaki, K., Yukawa, J., Ohgushi, T., and Price, P.W.. Springer-Verlag, Sapporo, Japan. pp. 189198.CrossRefGoogle Scholar
Rhoades, D.F. 1979. Evolution of plant chemical defense against herbivores. In Herbivores: their interaction with secondary plant metabolites. Edited by Rosenthal, G.A. and Janzen, D.H.. Academic Press, New York. pp. 354.Google Scholar
Santos, J.C., Silveira, F.A.O., and Fernandes, G.W. 2008. Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evolutionary Ecology, 22: 123137.CrossRefGoogle Scholar
SAS Institute Inc. 2001. SAS/STAT version 8.2 [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Seehawer, J.M. 2002. Impact of larval phenology and fitness trade-offs on the host races of Gnorimoschema gallaesolidaginis and host related population structure in one of its parasitoids, Copidosoma gelechiae. M.Sc. thesis, University of Iowa, Iowa City, Iowa.Google Scholar
Semple, J.C., and Cook, R.E. 2006. Solidago. In Flora of North America. Edited by Flora North America Editorial Committee. Oxford University Press, Oxford, United Kingdom. pp. 107166.Google Scholar
Stireman, J.O. III, Nason, J.D., and Heard, S.B. 2005. Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod insect community. Evolution, 59: 25732587.CrossRefGoogle ScholarPubMed
Walton, R., Weis, A.E., and Lichter, J.P. 1990. Oviposition behavior and response to plant height by Eurosta solidaginis Fitch (Diptera: Tephritidae). Annals of the Entomological Society of America, 83: 509514.CrossRefGoogle Scholar
Wellings, P.W. 1987. Spatial distribution and interspecific competition. Ecological Entomology, 12: 359362.CrossRefGoogle Scholar
White, T.C.R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia, 63: 90105.CrossRefGoogle Scholar
Wise, M.J., Fox, R.J., and Abrahamson, W.G. 2006. Disarming the paradox of sublethal plant defense against insects: Trirhabda virgata larval development time and leaf tissue loss on Solidago altissima. Entomologia Experimenta et Applicata, 120: 7787.CrossRefGoogle Scholar