Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T00:51:16.109Z Has data issue: false hasContentIssue false

Phylogenetic framework for Dioryctria (Lepidoptera: Pyralidae: Phycitinae) based on combined analysis of mitochondrial DNA and morphology

Published online by Cambridge University Press:  02 April 2012

Yanli Du
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
Amanda D. Roe
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
Felix A.H. Sperling*
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
*
2 Corresponding author (e-mail: [email protected]).

Abstract

Coneworms of the genus Dioryctria Zeller are important lepidopterous pests of conifer cones throughout the Holarctic region. Seventy-nine Dioryctria species are currently recognized and arranged into 11 species groups, but a globally unified classification of these species groups has not been attained. We surveyed 14 Dioryctria species belonging to 7 species groups recognized as being taxonomically problematic. Mitochondrial DNA sequences and morphological characters were used to resolve relationships among and within species groups and species. Sequences were obtained for 2.3 kb of the mitochondrial COI + COII genes and related to 52 morphological characters. Parsimony analyses of separate and combined data showed that (i) the five included Chinese species (D. abietella (Denis and Schiffermüller), D. rubella Hampson, D. nr. rubella, D. magnifica Munroe, and D. yiai Mutuura and Munroe) were distinct from the North American taxa, and their relationships were interspersed among Nearctic and European species; (ii) three of the four species groups represented by more than one species formed robust, well-supported clades (abietella group, sylvestrella group, and zimmermani group) for both mtDNA sequences and morphology; (iii) mtDNA and morphology gave conflicting interspecific and intergroup relationships for the auranticella, schuetzeella, ponderosae, and baumhoferi groups; (iv) all eight species for which more than one specimen was sampled were characterized by discrete clusters of mitochondrial DNA haplotypes, and mtDNA divergences among species in the same species group were generally less than those among species in different species groups; and (v) combining mtDNA data with morphological data increased support for most nodes in the phylogeny, with morphological characters providing support for species groups and mtDNA being essential for distinguishing species within species groups. This study demonstrates the value of a combined analysis of both mtDNA and morphological characters and establishes a phylogenetic framework for broader and more comprehensive studies of Dioryctria species.

Résumé

Les pyrales des cônes du genre Dioryctria Zeller sont des ravageurs importants des cônes de conifères dans toute la région holarctique. On reconnaît actuellement 79 espèces de Dioryctria regroupées en 11 groupes d'espèces, mais il n'existe pas de classification uniforme de ces groupes d'espèces à l'échelle globale. Nous avons étudié 14 espèces de Dioryctria appartenant à 7 groupes d'espèces reconnus comme posant des problèmes taxonomiques. Des séquences d'ADN mitochondrial et des caractères morphologiques nous ont servi à établir les relations entre les groupes d'espèces et les espèces et à l'intérieur de ces catégories. Nous avons obtenu des séquences de 2,3 kb des gènes mitochondriaux COI + COII et nous avons comparé 52 caractères morphologiques. Des analyses de parcimonie des données séparées et regroupées indiquent que (i) les cinq espèces chinoises étudiées (D. abietella (Denis et Schiffermüller), D. rubella Hampson, D. près de rubella, D. magnifica Munroe et D. yiai Mutuura et Munroe) sont distinctes des taxons nord-américains et leurs relations sont dispersées parmi des espèces européennes et néarctiques, (ii) trois des quatre groupes d'espèces étudiés et représentés par plus d'une espèce (groupes d'abietella, de sylvestrella et de zimmermani) forment des clades robustes bien définis tant par les séquences d'ADN que par la morphologie, (iii) les relations inter-groupes et intra-groupes établies à partir de l'ADNmt et de la morphologie sont souvent incompatibles entre elles chez les groupes d'auranticella, de schuetzeella, de ponderosae et de baumhoferi, (iv) les espèces sont caractérisées par des regroupements distincts d'haplotypes d'ADN mitochondrial chez l'ensemble des huit espèces chez lesquelles plus d'un spécimen a été examiné et les divergences d'ADNmt entre les espèces dans un même groupe d'espèces sont généralement moindres qu'entre les groupes d'espèces eux-mêmes, (v) la combinaison des données d'ADNmt et des données morphologiques vient généralement raffermir la définition des principaux noyaux de la phylogénie; les données morphologiques appuient la définition des groupes d'espèces et les données d'ADNmt sont essentielles pour distinguer les espèces au sein des groupes d'espèces. Notre étude démontre l'avantage de combiner les caractéristiques de l'ADNmt et de la morphologie et elle fournit un cadre phylogénétique pour des études élargies et plus complètes des espèces de Dioryctria.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Animal and Plant Health Inspection Service. 2000. Pest risk assessment for importation of solid wood packing materials into the United States [online]. United States Department of Agriculture. Available from http://www.aphis.usda.gov/ppq/pra/swpm/ [cited 26 January 2005].Google Scholar
Baker, R.H., and DeSalle, R. 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology, 46: 654673.CrossRefGoogle ScholarPubMed
Baker, R.H., Yu, X., and DeSalle, R. 1998. Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees. Molecular Phylogenetics and Evolution, 9: 427436.CrossRefGoogle ScholarPubMed
Baker, R.H., Wilkinson, G.S., and DeSalle, R. 2001. Phylogenetic utility of different types of molecular data used to infer evolutionary relationship among stalk-eyed flies (Diopsidae). Systematic Biology, 50: 87105.CrossRefGoogle ScholarPubMed
Blanchard, A., and Knudson, E.C. 1983. A new species of Dioryctria Zeller (Lepidoptera: Pyralidae) from Texas. Proceedings of the Entomological Society of Washington, 85(1): 116120.Google Scholar
Bogdanowicz, S.M., Wallner, W.E., Bell, T.M., and Harrison, R.G. 1993. Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: evidence from molecular data. Annals of the Entomological Society of America, 86: 710715.CrossRefGoogle Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics, 10: 295304.Google Scholar
Brown, J.M., Pellmyr, O., Thompson, J.N., and Harrison, R.G. 1994. Phylogeny of Greya (Lepidoptera: Prodoxidae) based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II: congruence with morphological data. Molecular Biology and Evolution, 11: 128141.Google Scholar
Caterino, M.S., and Sperling, F.A.H. 1999. Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution, 11(1): 122137.Google Scholar
Caterino, M.S., Reed, R.D., Kuo, M.M., and Sperling, F.A.H. 2001. A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Systematic Biology, 50: 106127.Google Scholar
Damgaard, J., Andersen, N.M., Cheng, L., and Sperling, F.A.H. 2000. Phylogeny of sea skaters, Halobates eschscholtz (Hemiptera, Gerridae), based on mtDNA sequence and morphology. Zoological Journal of the Linnean Society, 130: 511526.CrossRefGoogle Scholar
DeSalle, R., and Brower, A.V.Z. 1997. Process partitions, congruence, and the independence of characters: inferring relationships among closely related Hawaiian Drosophila from multiple generegions. Systematic Biology, 46: 751764.CrossRefGoogle Scholar
Du, Y. 2002. A taxonomic study on subfamily Phycitinae of northern China (Lepidoptera: Pyralidae). Ph.D. thesis, Nankai University, Tianjin, China.Google Scholar
Gatesy, J., O'Grady, P., and Baker, R.H. 1999. Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics, 15(3): 271313.Google Scholar
Giribet, G., Distel, D.L., Polz, M., Sterrer, W., and Wheeler, W.C. 2000. Triploblastic relationships with emphasis on the Acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology, 49: 539562.CrossRefGoogle ScholarPubMed
Haack, R.A., and Cavey, J.F. 1997. Insects intercepted on wood articles at ports-of-entry in the United States: 1985–1996. Newsletter of the Michigan Entomological Society, 42(2–4): 15.Google Scholar
Harrison, R.G. 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution, 4: 611.CrossRefGoogle ScholarPubMed
Hedlin, A.F., Yates, H.O. III, Cibrian-Tovar, D., Ebel, B.H., Koerber, T.W., and Merkel, E.P. 1980. Cone and seed insects of North American conifers. Canadian Forestry Service, USDA Forest Service, and Secretaría de Agricultura y Recursos Hidráulicos, Mexico.Google Scholar
Heinrich, C. 1956. American moths of the subfamily Phycitinae. United States National Museum Bulletin 207. Smithsonian Institution, Washington, D.C.Google Scholar
Klompen, J.S.H., Black, W.C. IV, Keirans, J.E., and Norris, D.E. 2000. Systematics and biogeography of hard ticks, a total evidence approach. Cladistics, 16: 79102.Google Scholar
Kruse, J.J., and Sperling, F.A.H. 2001. Molecular phylogeny within and between species of the Archips argyrosphila complex (Lepidoptera: Tortricidae). Annals of the Entomological Society of America, 94(2): 166173.CrossRefGoogle Scholar
Kruse, J.J., and Sperling, F.A.H. 2002. Phylogeny of Nearctic species of the Xylosteana group of Archips Hübner (Lepidoptera: Tortricidae) based on combined analysis of morphological and mitochondrial DNA data sets. Annals of the Entomological Society of America, 95(3): 288301.Google Scholar
Li, H., and Zheng, Z. 1996. Methods for microlepidopteran study. Journal of Shanxi University, Natural Science Edition, 24(3): 6370.Google Scholar
Maddison, W.P., and Maddison, D.R. 2002. MacClade 4.05 OSX [computer program]. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Mallarino, R., Bermingham, E., Willmott, K.R., Whinnett, A., and Jiggins, C.D. 2005. Molecular systematics of the butterfly genus Ithomia (Lepidoptera: Ithomiinae): a composite phylogenetic hypothesis based on seven genes. Molecular Phylogenetics and Evolution, 34: 625644.CrossRefGoogle ScholarPubMed
Miller, J.S., Brower, A.V.Z., and DeSalle, R. 1997. Phylogeny of the neotropical moth tribe Josiini (Notodontidae: Dioptinae): comparing and combining evidence from DNA sequences and morphology. Biological Journal of the Linnean Society, 60: 297316.CrossRefGoogle Scholar
Moritz, C., Dowling, T.E., and Brown, W.M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269292.Google Scholar
Munroe, E. 1958. Far-eastern Pyralidae (Lepidoptera). The Canadian Entomologist, 90: 249251.CrossRefGoogle Scholar
Munroe, E. 1959. Canadian species of Dioryctria Zeller (Lepidoptera: Pyralidae). The Canadian Entomologist, 91(2): 6572.Google Scholar
Mutuura, A. 1958. On the Dioryctria of Japan (Phycitinae). Entomological Laboratory, College of Agriculture, University of Osaka Prefecture, Publication 4.Google Scholar
Mutuura, A. 1982. American species of Dioryctria (Lepidoptera: Pyralidae). VI. A new species of Dioryctria from eastern Canada and northeastern United States. The Canadian Entomologist, 114(11): 10691076.Google Scholar
Mutuura, A., and Munroe, E. 1972. American species of Dioryctria (Lepidoptera: Pyralidae). III. Grouping of species: species of the auranticella group, including the Asian species, with the description of a new species. The Canadian Entomologist, 104(5): 609625.CrossRefGoogle Scholar
Mutuura, A., and Munroe, E. 1973. American species of Dioryctria (Lepidoptera: Pyralidae). IV. The schuetzeella group and the taxonomic status of the spruce cone moth. The Canadian Entomologist, 105: 653668.CrossRefGoogle Scholar
Mutuura, A., and Munroe, E. 1974. A new genus related to Dioryctria Zeller (Lepidoptera: Pyralidae: Phycitinae), with description of an additional species-group in Dioryctria. The Canadian Entomologist, 106: 937940.CrossRefGoogle Scholar
Mutuura, A., and Munroe, E. 1979. American species of Dioryctria (Lepidoptera: Pyralidae). V. Three new cone-feeding species from the south eastern United States. Journal of the Georgia Entomological Society, 14(4): 290304.Google Scholar
Mutuura, A., Munroe, E., and Ross, D.A. 1969 a. American species of Dioryctria (Lepidoptera: Pyralidae). I. Western Canadian species of the zimmermani group. The Canadian Entomologist, 10(10): 10091023.Google Scholar
Mutuura, A., Munroe, E., and Ross, D.A. 1969 b. American species of Dioryctria (Lepidoptera: Pyralidae). II. Western Canadian species of the baumhoferi and ponderosae groups. The Canadian Entomologist, 10(10): 10421047.Google Scholar
Neunzig, H.H. 1990. A new species of Dioryctria (Pyralidae: Phycitinae) from Mexico. Proceedings of the Entomological Society of Washington, 92(3): 493496.Google Scholar
Neunzig, H.H. 1996. New species of Phycitinae (Lepidoptera: Pyralidae) from the Dominican Republic. Proceedings of the Entomological Society of Washington, 98(4): 774801.Google Scholar
Neunzig, H.H. 2003. The moths of America North of Mexico, Fascicle 15.5: Pyraloidea, Pyralidae, Phycitinae (part). Wedge Entomological Research Foundation, Washington, D.C.Google Scholar
Neunzig, H.H., and Dow, L.C. 1993. The Phycitinae of Belize (Lepidoptera: Pyralidae). North Carolina Agricultural Research Service Technical Bulletin, 304: 2728.Google Scholar
Neunzig, H.H., and Leidy, N.A. 1989. A new species of Dioryctria (Lepidoptera: Pyralidae: Phycitinae) from the southeastern United States. Proceedings of the Entomological Society of Washington, 91(3): 321324.Google Scholar
Normark, B.B. 2000. Molecular systematics and evolution of the aphid family Lachnidae. Molecular Phylogenetics and Evolution, 14: 131140.Google Scholar
Normile, D. 2004. Expanding trade with China creates ecological backlash. Science (Washington, D.C.), 306: 968969.Google Scholar
O'Grady, P.M., Clark, J.B., and Kidwell, MG. 1998. Phylogeny of the Drosophila saltans species group based on combined analysis of nuclear and mitochondrial DNA sequences. Molecular Biology and Evolution, 15(6): 656664.Google Scholar
Remsen, J., and DeSalle, R. 1998. Character congruence of multiple data partitions and the origin of the Hawaiian Drosophilidae. Molecular Phylogenetics and Evolution, 9: 225235.CrossRefGoogle ScholarPubMed
Roesler, R.U. 1968. Phycitinen-Studien IV (Lep., Pyralidae). Entomologische Zeitschrift, 78: 225239.Google Scholar
Roesler, R.U. 1973. Phycitinae. In Microlepidoptera Palaearctica. Vol. 4. Edited by Amsel, H.G., Gregor, F., and Reisser, H.. Fromme, G., Vienna.Google Scholar
Schaber, B.D., and Wood, F.E. 1971. A new species of Dioryctria infesting loblolly pine (Lepidoptera: Pyralidae). Proceedings of the Entomological Society of Washington, 73(2): 215223.Google Scholar
Segerer, A.H., and Pröse, H. 1997. Dioryctria resiniphila sp.n., eine neue Pyralide auf Abies cephalonica Loud. in Griechenland. Nachrichtenblatt der Bayerischen Entomologen, 46(3/4): 5767.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651701.Google Scholar
Skevington, J.H., and Yeates, D.K. 2000. Phylogeny of the Syrphoidea (Diptera) inferred from mtDNA sequences and morphology with particular reference to classification of the Pipunculidae (Diptera). Molecular Phylogenetics and Evolution, 16: 212224.CrossRefGoogle ScholarPubMed
Sopow, S.L., Bennett, R.G., Landry, J.-F., and Landry, B. 1996. Identification of the “grey” Dioryctria species of British Columbia (Lepidoptera, Pyralidae). Journal of the Entomological Society of British Columbia, 93: 7592.Google Scholar
Sorenson, M.D. 1999. TreeRot. Version 2 [computer program]. Boston University, Boston, Massachusetts.Google Scholar
Speidel, W. 1996. Pyralidae. In The lepidoptera of Europe — a distributional checklist. Edited by Karsholt, O. and Razowski, J.. Apollo Books, Stenstrup, the Netherlands. pp. 166196.Google Scholar
Speidel, W., and Asselbergs, E.F. 2000. The status of Ocrisia Ragonot, 1893, and notes on Dioryctria Zeller, 1846 (Lepidoptera: Pyralidae: Phycitinae). Entomologische Zeitschrift, 110(5): 144146.Google Scholar
Sperling, F.A.H. 2003. Butterfly species and molecular phylogenies. In Butterflies: evolution and ecology taking flight. Edited by Boggs, C., Watt, W., and Ehrlich, P.. University of Chicago Press, Chicago. pp. 431458.Google Scholar
Sperling, F.A.H., and Hickey, D.A. 1994. Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Molecular Biology and Evolution, 11: 656665.Google Scholar
Sperling, F.A.H., Anderson, G.S., and Hickey, D.A. 1994. A DNA-based approach to the identification of insect species used for postmortem interval estimation. Journal of Forensic Sciences, 39: 418427.Google Scholar
Sperling, F.A.H., Landry, J.-F., and Hickey, D.A. 1995. DNA-based identification of introduced ermine moth species in North America (Lepidoptera: Yponomeutidae). Annals of the Entomological Society of America, 88: 155162.CrossRefGoogle Scholar
Sperling, F.A.H., Byers, R., and Hickey, D. 1996. Mitochondrial DNA sequence variation among pheromotypes of the dingy cutworm, Feltia jaculifera (Gn.) (Lepidoptera: Noctuidae). Canadian Journal of Zoology, 74: 21092117.Google Scholar
Sperling, F.A.H., Spence, J.R., and Andersen, N.M. 1997. Mitochondrial DNA, allozymes, morphology, and hybrid compatibility in Limnoporus water striders (Heteroptera: Gerridae): Do they all track species phylogenies? Annals of the Entomological Society of America, 90: 401415.CrossRefGoogle Scholar
Sun, J., Gillette, N.E., Miao, Z., Kang, L., Zhang, Z., Owen, D.R., and Stein, J.D. 2003. Verbenone interrupts attraction to host volatiles and reduces attack on Pinus tabuliformis (Pinaceae) by Dendroctonus valens (Coleoptera: Scolytidae) in the People's Republic of China. The Canadian Entomologist, 135: 721732.Google Scholar
Swofford, D.L. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Turgeon, J.J., Roques, A., and DeGroot, P. 1994. In sect fauna of coniferous seed cones: diversity, host-plant interactions and management. Annual Review of Entomology, 39: 179212.CrossRefGoogle Scholar
Wahlberg, N., and Zimmermann, M. 2000. Patterns of phylogenetic relationships among members of the Tribe Melitaeini (Lepidoptera: Nymphalidae) inferred from mitochondrial DNA sequences. Cladistics, 16(4): 347363.Google Scholar
Wahlberg, N., Oliveira, R., and Scott, J.A. 2003. Phylogenetic relationships of Phyciodes butterfly species (Lepidoptera: Nymphalidae): complex mtDNA variation and species delimitations. Systematic Entomology, 28: 257273.Google Scholar
Wang, P.Y., and Sung, S.M. 1982. Description of a new species of Dioryctria Zeller on Pinus sylvestris var. mongolica from north-east China, with establishment of a new species group (Lepidoptera: Pyralidae, Phycitinae). Acta Entomologica Sinica, 25(3): 323327.Google Scholar
Wang, P.Y., and Sung, S.M. 1985. Revision of Chinese coneworms Dioryctria of the sylvestrella group (Lepidoptera: Pyralidae, Phycitinae). Acta Entomologica Sinica, 28: 302313.Google Scholar
Wells, J.D., and Sperling, F.A.H. 1999. Molecular phylogeny of Chrysomya albiceops and C. ruffifacies (Diptera: Calliphoridae). Journal of Medical Entomology, 36: 222226.Google Scholar
Winter, W.D. 2000. Basic techniques for observing and studying moths and butterflies. Memoirs of the Lepidopterists' Society No. 5. Lepidopterists' Society, Los Angeles, California.Google Scholar
Yamanaka, H. 1990. Descriptions of three new species of Phycitinae (Lepidoptera: Pyralidae) from Japan. Tinea, 12(26): 231238.Google Scholar