Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T18:00:16.867Z Has data issue: false hasContentIssue false

PERFORMANCE OF TRIRHABDA VIRGATA (COLEOPTERA: CHRYSOMELIDAE) ON THREE POTENTIAL HOSTS

Published online by Cambridge University Press:  31 May 2012

S.E. Blatt*
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
A.M. Schindel
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
R. Harmsen
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
*
1Author to whom all conesoondence should be addressed

Abstract

The suitability of three potential host plants, Solidago canadensis L. var. canadensis (Asteraceae), Solidago graminifolia (L.) Salisb., and Aster lateriflorus L. (Asteraceae), for the goldenrod beetle, Trirhabda virgata LeConte was determined by measuring several fitness components during the T. virgata life cycle. Neonate larvae were collected from S. canadensis plants and transplanted onto S. canadensis, S. graminifolia, and A. lateriflorus and maintained in field enclosures until the last instar was reached. Once brought into the laboratory, larvae were fed their assigned host plant until pupation. Following emergence, adults were weighed and separated into mating pairs to record oviposition and longevity. Eggs were kept in the laboratory until the following spring, when first instar larvae were taken into the field and re-established on their assigned host, and the experiment was repeated for 2 years. Larval survival and rate of development was not affected by the host plant. Mean weight of adults at emergence was greater on S. canadensis than on either S. graminifolia or A. lateriflorus. Two components of adult fitness, postmating longevity and realized fecundity, were measured. Longevity of adult female T. virgata was not affected by the host plant. Fecundity of T. virgata reared on A. lateriflorus and S. graminifolia was lower than the fecundity of females reared on S. canadensis. These results are consistent with the hypothesis that both intrinsic plant quality and the mobility of the foraging stage are important in the evolution of host range in T. virgata. These experiments were repeated over a 3-year period, using offspring from the survivors of the previous year for the 2nd and 3rd years. Over this time, individuals experienced "laboratory adaptation," and both accepted and increased their performance on previously unacceptable food plants.

Résumé

Le potentiel de trois plantes, Solidago canadensis var. canadensis (Asteraceae), Solidago graminifolia (L.) Salisb. et Aster lateriflorus L. (Asteraceae), comme hôtes de la chrysomèle Trirhabda virgata LeConte a été vérifiée par mesure de plusieurs composantes du fitness au cours du cycle de l’insecte. Des larves néonates ont été récoltées sur des plants de S. canadensis et transférées sur des plants de S. canadensis, S. graminifolia et A. lateriflorus dans des enclos extérieurs où elles sont restées jusqu’à leur dernier stade. Une fois rapportées au laboratoire, les larves ont été nourries de la plante hôte qui leur a été assignée, jusqu’à la nymphose. Après l’émergence, les adultes ont été pesés et séparés en couples de façon à ce que la ponte et la longévité puissent en être étudiées. Les oeufs ont été gardés en laboratoire jusqu’au printemps suivant et les larves de premier stade issues de la ponte ont été rapportées sur le terrain et réétablies sur l’hôte qui leur a été assigné; l’expérience a été répétée pendant 2 ans. La survie des larves et la vitesse du développement n’ont pas été affectées par la nature de l’hote. La masse moyenne des adultes était plus élevée chez S. canadensis que chez les deux autres plantes. Deux composantes du fitness ont été mesurées chez les adultes, la lngévité après l’accouplement et la fécondité réalisée. La longévité des femelles de T. virgata n’a pas été affectée par la nature de l’hôte. En revanche, la fécondité des insectes s’est avérée plus faible chez les femelles élevées sur A. lateriflorus et S. graminifolia que chez celles élevées sur S. canadensis. Ces résultats sont en accord avec l’hypothèse selon laquelle la qualité intrinsèque des plantes hôtes et la mobilité des stades consommateurs de l’insecte sont des facteurs déterminants de l’évolution de l’éventail d’hôtes chez T. virgata. Ces expériences ont été répétées au cours d’une période de 3 ans pendant lesquelles les rejetons des survivants de l’année précédente ont été utilisés au cours de la 2e et de la 3e années. Durant ce temps, les insectes ont subi une "adaptation en laboratoire" et ont accepté de nouvelles plantes hôtes et y ont même amélioré leur performance.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baur, R., Rank, N.E. 1996. Influence of host quality and natural enemies on the life history of the alder leaf beetles Agelastica alni and Linaeidea aenea. pp. 173–94 in Jolivet, P.H., Cox, M.L., Hsaio, T.H. (Eds.), Chrysomelidae biology. Vol. 2. Amsterdam: SPB PublishingGoogle Scholar
Bernays, E., Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–92CrossRefGoogle Scholar
Cacoyianni, Z., Kovacs, I.V., Hoffmann, A.A. 1995. Laboratory adaptation and inbreeding in Helicoverpa punctigera (Lepidoptera: Noctuidae). Australian Journal of Zoology 43: 8390CrossRefGoogle Scholar
Craig, T.P., Itami, J.K., Price, P.W. 1989. A strong relationship between oviposition preference and larval performance in a shoot-galling sawfly. Ecology 70: 1691–9CrossRefGoogle Scholar
Cronquist, A. (Editor). 1980. Vascular flora of the southeastern United States. Vol. 1. Chapel Hill: University of North Carolina PressGoogle Scholar
Denno, R.F., Larsson, S., Olmstead, K.L. 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71: 124–37CrossRefGoogle Scholar
Ehrlich, P.R., Raven, P.H. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586608CrossRefGoogle Scholar
Futuyma, D.J., Peterson, S.C. 1985. Genetic variation in the use of resources by insects. Annual Review of Entomology 30: 217–38CrossRefGoogle Scholar
Herzig, A., Root, R.B. 1996. Colonization of host patches following long-distance dispersal by a goldenrod beetle, Trirhabda virgata. Ecological Entomology 21: 344–51CrossRefGoogle Scholar
Hopkins, R.J., Ekbom, B. 1996. Low oviposition stimuli reduce egg production in the pollen beetle, Meligethes aeneus. Physiological Entomology 21: 118–22CrossRefGoogle Scholar
Hsiao, T.H. 1981. Ecophysiological adaptations among geographic populations of the Colorado potato beetle in North America. pp. 6985in Lashomb, J.H., Casagrande, R.A. (Eds.), Advances in potato pest management. Stroudsburg: Hutchinson and RossGoogle Scholar
Jaenike, J. 1978. On optimal oviposition behavior in phytophagous insects. Theoretical Population Biology 14: 350–6CrossRefGoogle ScholarPubMed
Jayanth, K.P., Bali, G. 1996. Effect of continuous laboratory rearing on the fecundity, longevity and sex ratio of the Parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). Journal of Entomological Research (New Delhi) 20: 151–6Google Scholar
Jones, C.L., Whitman, D.G., Silk, P.J., Blum, M.S. 1988. Diet breadth and insect defenses: a generalist grasshopper and general hypotheses. pp. 477512in Spencer, K.C. (Ed.), Chemical mediation of coevolution. San Diego: Academic Press Inc.CrossRefGoogle Scholar
Joshi, A., Thompson, J.N. 1995. Trade-offs and the evolution of host specialization. Evolutionary Ecology 9: 8292CrossRefGoogle Scholar
Lawton, J.H., Strong, D.R. 1981. Community patterns and competition in folivorous insects. American Naturalist 118: 317–38CrossRefGoogle Scholar
May, M.L., Ahmad, S. 1983. Host location in the Colorado potato beetle: searching mechanisms in relation to oligophagy. pp. 173–99 in Ahmad, S. (Ed.) Herbivorous insects: host-seeking behavior and mechanisms. New York: Academic Press, Inc.CrossRefGoogle Scholar
McBrien, H.L. 1983. Insect–plant interactive dynamics in an old-field community: Trirhabda and Solidago. Master thesis, Queen's University, Kingston, OntarioGoogle Scholar
Messina, F.J. 1982 a. Food plant choices of two goldenrod beetles in relation to plant quality. Oecologia 55: 342–54CrossRefGoogle ScholarPubMed
Messina, F.J. 1982 b. Timing of dispersal and ovarian development in goldenrod leaf beetles, Trirhabda virgata and T. borealis. Annals of the Entomological Society of America 75: 7883CrossRefGoogle Scholar
Messina, F.J. 1982 c. Comparative biology of the leaf beetles, Trirhabda virgata and T. borealis (Coleoptera: Chrysomelidae). Coleopterists Bulletin 36: 256–70Google Scholar
Messina, F.J. 1983. Parasitism of two goldenrod beetles (Coleoptera: Chrysomelidae) by Aplomyiopsis xylota (Diptera: Tachinidae). Environmental Entomology 12: 807–9CrossRefGoogle Scholar
Morton, J.K., Venn, J.M. (Editors). 1990. A checklist of the flora of Ontario: vascular plants. Waterloo: University of WaterlooGoogle Scholar
Pasteels, J.M., Braekman, J.C., Daloze, D.D. 1988. Chemical defense in the Chrysomelidae. pp. 233–60 in Jolivet, P., Petitpierre, E., Hsiao, T.H. (Eds.), Biology of Chrysomelidae. Dordrecht: Kluwer PublishingCrossRefGoogle Scholar
Rank, N.E., Köpf, A., Julkunen-Tiitto, R., Tahvanainen, J. 1998. Host preference and larval performance of the salicyclate-using leaf beetle Phratora vitellinae. Ecology 79: 618–31CrossRefGoogle Scholar
Rausher, M.D. 1979. Larval habitat suitability and oviposition preference in three related butterflies. Ecology 60: 503–11CrossRefGoogle Scholar
Rhoades, D.F., Cates, R.G. 1976. A general theory of plant antiherbivore chemistry. pp. 168213in Wallace, J.B., Mansell, R.L. (Eds.), Recent Advances in Phytochemistry. Vol. 10. New York: Plenum PressGoogle Scholar
Rosenthal, G.A., Janzen, D.H. (Editors). 1979. Herbivores: their interaction with secondary plant metabolites. New York: Academic Press, Inc.Google Scholar
Rowell-Rahier, M. 1984. The food plant preferences of Phratora vitellinae (Coleoptera: Chrysomelidae). Oecologia (Berlin) 64: 369–80CrossRefGoogle ScholarPubMed
Scriber, J.M. 1983. Evolution of feeding specialization, physiological efficiency and host races in selected Papilionidae and Saturniidae. pp. 373412in Denno, R.R., McClure, M.S. (Eds.) Variable plants and herbivores in natural and managed systems. New York: Academic Press, Inc.CrossRefGoogle Scholar
Scriber, J.M., Slansky, F. 1981. The nutritional ecology of immature insects. Annual Review of Entomology 26: 183211CrossRefGoogle Scholar
Smiley, J.T. 1985. Are chemical barriers necessary for evolution of butterfly–plant associations? Oecologia (Berlin) 65: 580–3CrossRefGoogle ScholarPubMed
Smiley, J.T., Horn, J.H., Rank, N.E. 1985. Ecological effect of salicin at three trophic levels: new problems from old adaptations. Science 229: 649–51CrossRefGoogle ScholarPubMed
Stitch, T.A., Grewcock, D.A., Gilbert, F.S. 1988. Factors affecting components of fitness in a gall-inducing wasp (Cynips divisa Hartig). Oecologia 76: 371–5CrossRefGoogle Scholar
Thomas, C.D., Singer, M.C., Mallett, J.L.B., Parmesan, C., Billington, H.L.B. 1987. Incorporation of a European weed into the diet of a North American herbivore. Evolution 41: 892901CrossRefGoogle ScholarPubMed
Thompson, J.N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis et Applicata 47: 314CrossRefGoogle Scholar
Via, S. 1990. Ecological genetics and host adaptation in herbivorous insects: The experimental study of evolution in natural and agricultural systems. Annual Review of Entomology 35: 421–46CrossRefGoogle ScholarPubMed
Zar, J.H. (Editor). 1984. Biostatistical analysis. 2nd Ed. Englewood Cliffs: Prentice-Hall, Inc.Google Scholar