Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T01:52:00.052Z Has data issue: false hasContentIssue false

NUTRITIONAL STUDIES OF EASTERN SPRUCE BUDWORM (LEPIDOPTERA: TORTRICIDAE): II. STARCHES

Published online by Cambridge University Press:  31 May 2012

G. T. Harvey
Affiliation:
Canadian Forestry Service, Great Lakes Forest Research Centre, Sault Ste. Marie, Ontario
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Amylopectin added to a sugar-free wheat-germ diet was equal to or better than sucrose as a carbohydrate source, and appears to be readily utilized by the eastern spruce budworm (Choristoneura fumiferana (Clem.)). Larval growth on diets containing dextrins or potato starch shows that they are partly utilized. Starches from other sources, including those isolated from mature balsam fir (Abies balsamea (L.) Mill.) or white spruce (Picea glauca (Moench) Voss) needles, are not utilized to any extent, on the basis of larval growth on diets to which they have been added.

Sixth-instar budworm reared on artificial diets contain amylase(s) in midgut and salivary gland homogenates, which show a low rate of digestion of starches from host foliage. However, the presence of appreciable starch in frass from foliage-fed insects and the apparent low utilizability of foliar starch indicate that the latter is not an important nutrient for the budworm under natural conditions.

Résumé

Ajoutée à une diète de germe de blé sans sucre, l’amylopectine s’est avérée égale ou supérieure au sucrose en tant que source d’osés, et semble être aisément utilisée par la Tordeuse des bourgeons de l’Épinette, Choristoneura fumiferana (Clem.). La croissance larvaire obtenue sur des diètes contenant des dextrines ou de la fécule de pomme de terre montre que ces substances sont partiellement utilisées. D’après la croissance larvaire observée sur les diètes auxquelles ils ont été ajoutés, les amidons d’autres provenances y compris ceux isolés des aiguilles du Sapin baumier (Abies balsamea (L.) Mill.) ou de l’Épinette blanche (Picea glauca (Moench) Voss) à maturité ne sont nullement utilisés.

Les intestins et les glandes salivaires de la Tordeuse au sixième stade élevée sur diète artificielle contiennent des amylases, ce qui indique un faible taux de digestion des amidons du feuillage de l’arbre-hôte. Il appert cependant de la présence d’amidon en quantité considérable dans les chiures des insectes nourris au feuillage, ainsi que de la médiocre capacité évidente de l’amidon des feuilles à être utilisé, que ce dernier ne constitue pas une nourriture importante pour la Tordeuse dans les conditions naturelles.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1975

References

Altman, P. L. and Dittmer, D. S. (Eds.). 1968. Metabolism. Fed. Am. Soc. Exp. Biol., Bethesda, Md.Google Scholar
Badenhuizen, N. P. 1964. General method for starch isolation. In Whistler, R. L. (Ed.), Methods in carbohydrate chemistry. IV. Starch. Acad. Press, New York.Google Scholar
Badenhuizen, N. P. 1969. The biogenesis of starch granules in higher plants. Appleton-Century-Crofts, New York. 121 pp.Google Scholar
Badenhuizen, N. P. 1973. Fundamental problems in the biosynthesis of starch granules. Ann. N.Y. Acad. Sci. 210: 1116.CrossRefGoogle ScholarPubMed
Bailey, R. W. and Macrae, J. C.. 1973. Hydrolysis of intact leaf starch grains by glucoamylase and α-amylase. F.E.B.S. Lett. 31: 203204.CrossRefGoogle Scholar
Chippendale, G. M. and Reddy, G. P. V.. 1974. Dietary carbohydrates: Role in feeding behaviour and growth of southwestern corn borer, Diatraea grandiosella. J. Insect Physiol. 20: 751759.CrossRefGoogle ScholarPubMed
Dadd, R. H. 1970. Digestion in insects. In Florkin, M. and Scheer, B. T. (Eds.), Chemical zoology. V. Arthropoda Part A. Acad. Press, New York. pp. 117142.CrossRefGoogle Scholar
Evans, A. C. 1939. The utilization of food by certain lepidopterous larvae. Trans. R. ent. Soc. Lond. 89: 1322.CrossRefGoogle Scholar
Fraser, J. R. and Holmes, D. C.. 1959. Proximate analysis of wheat flour carbohydrates. IV. Analysis of wholemeal flour and some of its fractions. J. Sci. Food Agric. 10: 506512.CrossRefGoogle Scholar
Harvey, G. T. 1961. Second diapause in spruce budworm from eastern Canada. Can Ent. 93: 594602.CrossRefGoogle Scholar
Harvey, G. T. 1974. Nutritional studies of eastern spruce budworm (Lepidoptera: Tortricidae). I. Soluble sugars. Can. Ent. 106: 353365.CrossRefGoogle Scholar
Hawk, P. B., Oser, B. L., and Summerson, W. H.. 1949. Practical physiological chemistry. 12th ed. Blakiston, Toronto.Google Scholar
Heimpel, A. M. 1956. Further observations on the pH in the gut and the blood of Canadian forest insects. Can. J. Zool. 34: 210212.CrossRefGoogle Scholar
Hori, K. 1972. The digestibility of insoluble starches by the amylases in the digestive system of the bug Lygus disponsi and the effect of Cl and NO3 on the digestion. Emtomologia exp. appl. 15: 1322.CrossRefGoogle Scholar
Krueger, K. W. 1967. Nitrogen, phosphorus, and carbohydrate in expanding and year-old Douglas-fir shoots. For. Sci. 13: 352356.Google Scholar
Little, C. H. A. 1970. Seasonal changes in carbohydrate and moisture content in needles of balsam fir (Abies balsamea). Can. J. Bot. 48; 20212028.CrossRefGoogle Scholar
Manners, D. J. 1973. Starch and inulin, pp. 176197. In Miller, L. P. (Ed.), Phytochemistry, Vol. I. Van Nostrand, New York.Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 97: 158162.CrossRefGoogle Scholar
Mukaiyama, F., Horie, Y., and Ito, T.. 1964. Amylase of digestive juice and utilization of dextrin and starch in the silkworm, Bombyx mori L. J. Insect Physiol. 13: 12371246.Google Scholar
Neish, A. C. 1958. Seasonal changes in metabolism of spruce leaves. Can. J. Bot. 36: 649662.CrossRefGoogle Scholar
Rock, G. C. and Sharma, G. K.. 1974. Comparison of the nutritive values of carbohydrates to Argyrotaenia velutinana. Ann. ent. Soc. Am. 67: 391393.CrossRefGoogle Scholar
Schoch, T. J. 1969. Starches in foods, pp. 395420. In Schultz, H. W., Cain, R. F. and Woolstad, R. W. (Eds.), Symposium on foods: carbohydrates and their roles. AVI Publ., Westport, Conn.Google Scholar
Shaw, G. G. 1973. Importance of starches to spruce budworm (Lepidoptera: Tortricidae). Can. Ent. 105: 129132.CrossRefGoogle Scholar
Stehr, G. 1954. A laboratory method for rearing the spruce budworm, Choristoneura fumiferana (Clem.), (Lepidoptera: Tortricidae). Can. Ent. 86: 423428.CrossRefGoogle Scholar
Tsutsui, K. and Sato, A.. 1954. Studies on nutritional physiology of rice stem borer [In Japanese]. Kontyû 20: 99100.Google Scholar
(Cited by Hirano, C. and Ishii, Š.in Entomologia exp. appl. 5: 5359 (1962).)CrossRefGoogle Scholar
Ullman, T. 1932. Über die Entwicklung der Fermente einiger wirbellosen auf polymere Kohlenhydrate. Z. vergl. physiol. 17: 520536.CrossRefGoogle Scholar
Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5: 229288.CrossRefGoogle Scholar
Whelan, W. J. and Roberts, P. J. P.. 1953. Mechanisms of carbohydrate action. II. α-amylases of linear substrates. J. Chem. Soc. Lond.: 12981304.Google Scholar
Whistler, R. L. and Smart, C. L.. 1953. Polysaccharide chemistry. Academic Press, New York. pp. 229275.Google Scholar