Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:09:36.502Z Has data issue: false hasContentIssue false

New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America

Published online by Cambridge University Press:  27 October 2015

S. Bruce Archibald*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada Museum of Comparative Zoology, Cambridge, Massachusetts, United States of America; Royal BC Museum, Victoria, British Columbia, Canada
Alexandr P. Rasnitsyn
Affiliation:
A. A. Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia Department of Invertebrate Paleontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
*
1 Corresponding author (e-mail: [email protected])

Abstract

We describe three new genera and four new species (three named) of siricomorph sawflies (Hymenoptera: Symphyta) from the Ypresian (early Eocene) Okanagan Highlands: Pamphiliidae, Ulteramus republicensisnew genus, new species from Republic, Washington, United States of America; Siricidae, Ypresiosirex orthosemosnew genus, new species from McAbee, British Columbia, Canada; and Cephidae, Cuspilongus cachecreekensisnew genus, new species from McAbee and another cephid treated as Cephinae species A from Horsefly River, British Columbia, Canada. These are the only currently established occurrences of any siricomorph family in the Ypresian. We treat the undescribed new siricoid from the Cretaceous Crato Formation of Brazil as belonging to the Pseudosiricidae, not Siricidae, and agree with various authors that the Ypresian Megapterites mirabilis Cockerell is an ant (Hymenoptera: Formicidae). The Miocene species Cephites oeningensis Heer and C. fragilis Heer, assigned to the Cephidae over a century and a half ago, are also ants. Many of the host plants that siricomporphs feed upon today first appeared in the Eocene, a number of these in the Okanagan Highlands in particular. The Okanagan Highlands sites where these wasps were found also had upper microthermal mean annual temperatures as are overwhelmingly preferred by most modern siricomorphs, but were uncommon in the globally warm Ypresian, only found then in higher elevations and highest latitudes.

Type
Biodiversity & Evolution
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Michael Sharkey

References

Archibald, S.B., Bossert, W.H., Greenwood, D.R., and Farrell, B.D. 2010. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36: 374398.Google Scholar
Archibald, S.B., Greenwood, D.R., Smith, R.Y., Mathewes, R.W., and Basinger, J.F. 2011. Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State). Geoscience Canada, 38: 155164.Google Scholar
Archibald, S.B., Kehlmaier, C., and Mathewes, R.W. 2014a. Early Eocene big headed flies (Diptera: Pipunculidae) from the Okanagan Highlands, western North America. The Canadian Entomologist, 146: 429443.Google Scholar
Archibald, S.B. and Makarkin, V.N. 2006. Tertiary giant lacewings (Neuroptera: Polystoechotidae) revision and description of new taxa from western North America and Denmark. Journal of Systematic Paleontology, 4: 119155. 307 (errata). doi:10.1017/S1477201906001817.Google Scholar
Archibald, S.B., Morse, G.E., Greenwood, D.R., and Mathewes, R.W. 2014b. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum. Proceedings of the National Academy of Sciences, 111: 80958100. doi:10.1073/pnas.1323269111.Google Scholar
Barton, D. and Wilson, M.V.H. 2005. Taphonomic variations in Eocene fish-bearing varves at Horsefly, British Columbia, reveal 10 000 years of environmental change. Canadian Journal of Earth Sciences, 42: 137149.Google Scholar
Basinger, J.F., Greenwood, D.R., and Sweda, T. 1994. Early Tertiary vegetation of Arctic Canada and its relevance to palaeoclimatic interpretation. In Cenozoic plants and climates of the Arctic. Edited by M.C. Boulter and H.C. Fisher. Springer, Berlin, Germany. Pp. 176198.Google Scholar
Beneš, K. 1968. A new genus of Pamphiliidae from East Asia (Hymenoptera, Symphyta). Acta Entomologica Bohemoslovaca, 65: 458463.Google Scholar
Benson, R.B. 1945. Classification of the Pamphiliidae (Hymenoptera Symphyta). Proceedings of the Royal Entomological Society of London. Series B Taxonomy, 14: 2533.Google Scholar
Benson, R.B. 1946. Classification of the Cephidae (Hymenoptera Symphyta). Transactions of the Royal Entomological Society of London, 96: 89108.Google Scholar
Bolton, B. 2014. An online catalog of the ants of the world [online]. Available from http://www.antweb.org/description.do?rank=genus&genus=megapterites&project=worldants [accessed 1 March 2015].Google Scholar
Bouchal, J., Zetter, R., Grímsson, F., and Denk, T. 2014. Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. American Journal of Botany, 101: 13321349.Google Scholar
Budak, M., Korkmaz, E.M., and Basibuyuk, H.H. 2011. A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae) based on mtDNA COI gene: a test of traditional classification. ZooKeys, 130: 363378.Google Scholar
Carpenter, P.M. 1992. Superclass Hexapoda. In Treatise on invertebrate paleontology. Part R, Arthropoda. Volume 4. Edited by R.L. Kaesler. Geological Society of America, Boulder, Colorado, United States of America.Google Scholar
Cockerell, T.D.A. 1913. Some fossil insects from Florissant, Colorado. Proceedings of the United States National Museum, 44: 341346, +one plate (56).Google Scholar
Cockerell, T.D.A. 1933. A fossil sawfly from the Miocene shales near Creede, Colorado. Bulletin of the Brooklyn Entomological Society, 28: 186187.Google Scholar
Cockerell, T.D.A. 1940. Note on a fossil sawfly from Creede, Colorado. Bulletin of the Brooklyn Entomological Society, 35: 72.Google Scholar
Crane, P.R. and Stockey, R.A. 1987. Betula leaves and reproductive structures from the Middle Eocene of British Columbia, Canada. Canadian Journal of Botany, 65: 24902500.Google Scholar
Currano, E.D., Wilf, P., Wing, S.L., Labandeira, C.C., Lovelock, E.C., and Royer, D.L. 2008. Sharply increased insect herbivory during the Paleocene–Eocene thermal maximum. Proceedings of the National Academy of Sciences, 105: 19601964.Google Scholar
DeVore, M.L. and Pigg, K.B. 2007. A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Systematics and Evolution, 266: 4557.CrossRefGoogle Scholar
DeVore, M.L. and Pigg, K.B. 2010. Floristic composition and comparison of middle Eocene to late Oligocene floras of North America. Bulletin of Geosciences, 85: 111134.Google Scholar
Donovan, M.P., Iglesias, A., Wilf, P., Cúneo, N.R., and Labandeira, C.C. 2014. First comparison of latest Cretaceous and early Paleogene insect damage in the Southern Hemisphere supports a Patagonian biodiversity refugium. International Paleontological Association, 4th International Paleontological Congress; the history of life: a view from the Southern Hemisphere, 28 September to 3 October 2014, Mendoza, Argentina, Abstracts. p. 385. Geological Society of America, Boulder, Colorado, United States of America.Google Scholar
Goulet, H. 1993. Superfamilies Cephoidea, Megalodontoidea, Orussoidea, Siricoidea, Tenthredinoidea, and Xyeloidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Agriculture Canada Publication 1894/E, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 101129.Google Scholar
Goulet, H. 2014. Revision of the African horntail genus Afrotremex (Hymenoptera: Siricidae). Zootaxa, 3795: 201254.Google Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W., and Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42: 167185. doi:10.1139/E04-100.Google Scholar
Gromov, V.V., Dmitriev, V.Y., Zherikhin, V.V., Lebedev, E.L., Ponomarenko, A.G., Rasnitsyn, A.P., et al. 1993. Melovye entomofauny basseina reki Ulyi (Zapadnoe Ghbokhotye) [Cretaceous insect faunas from Uljya River basin (West Okhotsk region).]. In Mezozoyskie nasekomye i ostrakoda Azii [Mesozoic insects and ostracods from Asia]. Volume 252. Edited by A.G. Ponomarenko. Trudy Paleontologicheskogo Instituta Rossiyskoi Akademii Nauka, Moscow, Russia. Pp. 560. [In Russian].Google Scholar
Heer, O. 1847. Die Insektenfauna der Tertiärgebilde von Oeningen und Rodoboj in Croatien. W. Engelmann, Leipzig, Germany.Google Scholar
Heraty, J.M., Ronquist, F., Carpenter, J.M., Hawks, D., Schulmeister, S., Dowling, A.P., et al. 2011. Evolution of the hymenopteran megaradiation. Molecular Phylogenetetics and Evolution, 60: 7388. doi:10.1016/j.ympev.2011.04.003.Google Scholar
Huber, J.T. and Sharkey, M.J. 1993. Structure. In Hymenoptera of the World. Edited by H. Goulet and J.T. Huber. Agriculture Canada Publication 1894/E, Ottawa, Ontario, Canada. Pp. 1359.Google Scholar
Jarzembowski, E.A. 1996. Fossil insects of the Bournemouth Group (Eocene: Late Ypresian–Lutetian) of southern England. Tertiary Research, 16: 203211.Google Scholar
Klopfstein, S., Vilhelmsen, L., Heraty, J.M., Sharkey, M., and Ronquist, F. 2013. The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data. Public Library of Science One, 8: e69344. doi:10.1371/journal.pone.0069344.Google ScholarPubMed
Konow, F.W. 1897. Ueber fossile Blatt- und Halmwespen. Entomologische Nachrichten, 23: 3638.Google Scholar
Labandeira, C.C., Johnson, K.R., and Wilf, P. 2002. Impact of the terminal Cretaceous event on plant–insect associations. Proceedings of the National Academy of Sciences, 99: 20612066.Google Scholar
Lutz, H. 1986. Eine neue Unterfamilie der Formicidae (Insecta: Hymenoptera) aus dem mittel-eozänen Ölschiefer der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen). Senckenbergiana Lethaea, 67: 177218.Google Scholar
Makarkin, V.N. and Archibald, S.B. 2003. Family affinity of the genus Palaeopsychops Andersen with description of a new species from the Early Eocene of British Columbia, Canada (Neuroptera: Polystoechotidae). Annals of the American Entomological Society, 96: 171180. doi:10.1603/0013-8746(2003)096[0171:FAOTGP]2.0.CO;2.Google Scholar
Malagon-Aldana, L.A., Serna, F., and Smith, D.R. 2014. Siricidae (Hymenoptera) in Colombia, the first report of Urocerus gigas (Linnaeus) from northern South America. Proceedings of the Entomological Society of Washington, 116: 191192.CrossRefGoogle Scholar
Middlekauff, W. 1964. The North American sawflies of the genus Pamphilius (Hymenoptera: Pamphiliidae). University of California Publications in Entomology, 38: 180, +2 plates.Google Scholar
Moss, P.T., Greenwood, D.R., and Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia–Washington State) from palynology. Canadian Journal of Earth Sciences, 42: 187204. doi:10.1139/E04-095.Google Scholar
Nel, A. 1988. Redecription de Eosirex ligniticus Piton, 1940 (Hymenoptera Symphyta Siricidae). L’Entomologiste, 44: 287292.Google Scholar
Nel, A. 1991. Descriptions et revisions de trois “Siricidae” fossiles du Cenozoique (Hymenoptera). Bulletin de la Société Entomologique de France, 93: 247253.Google Scholar
Nel, A. 2004. New and poorly known Cenozoic sawflies of France (Hymenoptera, Tenthredinoidea, Pamphilioidea). Deutsche Entomologische Zeitschrift, 51: 253269.CrossRefGoogle Scholar
Osten, T. 2007. 11.18 Hymenoptera, bees, wasps and ants. In The Crato fossil beds of Brazil. Edited by D.M. Martill, G. Bechly, and R.F. Loveridge. Cambridge University Press, Cambridge, United Kingdom. Pp. 350365.Google Scholar
Penãlver, E. and Arillo, A. 2002. Primer registro fósil del género Acantholyda (Insecta: Hymenoptera: Pamphiliidae), Mioceno inferior de Ribesalbes (Espanã). Revista Espanõla de Paleontologia, 17: 7381.Google Scholar
Peters, R.S., Meyer, B., Krogmann, L., Borner, J., Meusemann, K., Schütte, K., et al. 2011. The taming of an impossible child: a standardized all-in approach to the phylogeny of Hymenoptera using public database sequences. BMC Biology, 9: 55.CrossRefGoogle Scholar
Pigg, K.B., Manchester, S.R., and Wehr, W.C. 2003. Corylus, Carpinus, and Paleocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby Formations of northwestern North America. International Journal of Plant Sciences, 164: 807822.Google Scholar
Rasnitsyn, A.P. 1968. Novye Mezozojskie Pilil’shhiki (Hymenoptera, Symphyta). [New mesozoic sawflies (Hymenoptera, Symphyta)]. In Jurskie Nasekomye Karatau [Jurassic insects of Karatau]. Edited by B.B. Rodendorf. Nauka, Moscow, Russia. Pp. 190236. [In Russian].Google Scholar
Rasnitsyn, A.P. 1969. Origin and evolution of lower Hymenoptera. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 123: 1196. [In Russian, with English translation by Amerind Co., New Delhi, India, 1979].Google Scholar
Rasnitsyn, A.P. 1980. Proiskhozhdenie i evolyutsiya pereponchatokrylykh nasekomykh. Trudy Paleontologicheskogo Instituta, 174: 1191. [In Russian: 1981 English translation by the Department of the Secretary of State Translation Bureau, Canada: The origin and evolution of Hymenoptera. Transactions of the Paleontological Institute].Google Scholar
Rasnitsyn, A.P. 1983. Iskopaemye pereponchatokrylye nadsemejstva Pamphilioidea. [Fossil members of the Hymenoptera, Pamphiloidea]. Paleontologicheskij Zhurnal, 2: 5468. [In Russian].Google Scholar
Rasnitsyn, A.P. 1988. An outline of evolution of the hymenopterous insects (order Vespida). Oriental Insects, 22: 115145.Google Scholar
Rasnitsyn, A.P., Jarzembowski, E.A., and Ross, A.J. 1998. Wasps (Insecta: Vespida=Hymenoptera) from the Purbeck and Wealden (Lower Cretaceous) of southern England and their biostratigraphical and paleoenvironmental significance. Cretaceous Research, 19: 329391.Google Scholar
Rasnitsyn, A.P. and Zhang, H. 2004a. Composition and age of the Daohugou hymenopteran (Insecta: Hymenoptera=Verspida) assemblage from Inner Mongolia, China. Palaeontology, 47: 15071517.Google Scholar
Rasnitsyn, A.P. and Zhang, H. 2004b. A new family, Daohugoidae fam. n., of siricomorph hymenopteran (Hymenoptera=Vespida) from the Middle Jurassic of Daohugou in Inner Mongolia (China). Proceedings of the Russian Entomological Society, 75: 1216.Google Scholar
Rasnitsyn, A.P. and Zhang, H. 2010. Early evolution of Apocrita (Insecta, Hymenoptera) as indicated by new findings in the Middle Jurassic of Daohugou, NE China. Acta Geologica Sinica, 84: 834873.Google Scholar
Riou, B. 1999. Descriptions de quelques insectes fossiles du Miocène supérieur de la Montagne d’Andance (Ardèche, France). Travaux de l’Ecole Pratique des Hautes Etudes, Biologie et Evolution des Insectes, Paris, 11–12: 123133.Google Scholar
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D.L., and Rasnitsyn, A.P. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology, 61: 973999. doi:10.1093/sysbio/sys058. Google Scholar
Rouse, G.E., Hopkins, W.S., and Piel, K.M. 1971. Palynology of some Late Cretaceous and Early Tertiary deposits in British Columbia and adjacent Alberta. Geological Society of America Special Paper, 127: 213246.Google Scholar
Scheibelreiter, G.K. 1978. The poppy-cephid, Pachycephus smyrnensis Stein (Hymenoptera: Cephidae). Zeitschrift für Angewandte Entomologie, 86: 1925.Google Scholar
Schiff, N.M., Goulet, H., Smith, D.R., Boudreault, C., Wilson, A.D., and Scheffler, B.E. 2012. Siricidae (Hymenoptera: Symphyta: Siricoidea) of the Western Hemisphere. Canadian Journal of Arthropod Identification, 21: 1305. doi:10.3752/cjai.2012.21.Google Scholar
Schorn, H.E. and Wehr, W.C. 1996. The conifer flora from the Eocene uplands at Republic, Washington. Washington Geology, 24: 2224.Google Scholar
Sharkey, M.J. 2007. Phylogeny and classification of Hymenoptera. Zootaxa, 1668: 521548.Google Scholar
Smith, D.R. 1988. A synopisis of the sawflies (Hymenoptera: Symphyta) of America south of the United States: introduction, Xyelidae, Pamphiliidae, Cimbicidae, Diprionidae, Xiphydriidae, Siricidae, Orussidae, Cephidae. Systematic Entomology, 13: 205261.Google Scholar
Smith, D.R. 1997. A new species of Janus (Hymenoptera: Cephidae) from Indonesia. Entomological News, 108: 2428.Google Scholar
Smith, D.R. 1999. Identity of Syrista speciosa Mocsáry and notes on the genus Urosyrista Maa (Hymenoptera: Cephidae). Proceedings of the Entomological Society of Washington, 101: 285289.Google Scholar
Smith, D.R. 2008. Sawflies and woodwasps (Hymenoptera: Symphyta) of Great Smoky Mountains National Park. Proceedings of the Entomological Society of Washington, 110: 379390.Google Scholar
Smith, D.R. and Schmidt, S. 2009. A new subfamily, genus, and species of Cephidae (Hymenoptera) from Australia. Zootaxa, 2034: 5660.Google Scholar
Smith, D.R. and Shinohara, A. 2002. A new genus and new species of Cephidae (Hymenoptera) from Sulawesi Utara, Indonesia. Proceedings of the Entomological Society of Washington, 104: 624628.Google Scholar
Smith, R.Y., Basinger, J.F., and Greenwood, D.R. 2009. Depositional setting, floristics and paleoenvironment of the Early Eocene Falkland site, a new fossil flora locality from the Okanagan Highlands, British Columbia. Canadian Journal of Earth Sciences, 46: 811822.Google Scholar
Smith, R.Y., Basinger, J.F., and Greenwood, D.R. 2012. Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada. Paleodiversity and Paleoenvironments, 92: 309328.Google Scholar
Strömberg, C.A.E. 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences, 102: 1198011984.Google Scholar
Strömberg, C.A.E. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39: 517544.Google Scholar
Taeger, A., Blank, S.M., and Liston, A.D. 2010. World catalog of Symphyta (Hymenoptera). Zootaxa, 2580: 11064.Google Scholar
van Achterberg, C. and van Aartsen, B. 1986. The European Pamphiliidae (Hymenoptera, Symphyta), with special reference to the Netherlands. (No. 234). Rijksmuseum van Natuurlijke Historie. Zoologische Verhandelingen, 234: 198.Google Scholar
Wang, M., Rasnitsyn, A.P., Shih, C.K., and Ren, D. 2014a. A new fossil genus in Pamphiliidae (Hymenoptera) from China. Alcheringa, 38: 17.Google Scholar
Wang, M., Rasnitsyn, A.P., Shih, C.K., and Ren, D. 2014b. A new Cretaceous genus of xyelydid sawfly illuminating nygmata evolution in Hymenoptera. BMC Evolutionary Biology, 14: 131. doi:10.1186/1471-2148-14-131.Google Scholar
Wappler, T., Labandeira, C.C., Rust, J., Frankenhäuser, H., and Wilde, V. 2012. Testing for the effects and consequences of mid Paleogene climate change on insect herbivory. Public Library of Science One, 7: e40744. doi:10.1371/journal.pone.0040744.Google Scholar
Wedmann, S. 1998. First records of fossil tremicine hymenopterans. Palaeontology, 41: 929938.Google Scholar
Wedmann, S., Pouillon, J.-M., and Nel, A. 2014. New Palaeogene horntail wasps (Hymenoptera, Siricidae) and a discussion of their fossil record. Zootaxa, 3869: 3343.CrossRefGoogle Scholar
Wehr, W.C. and Schorn, H.E. 1992. Current research on Eocene conifers at Republic, Washington. Washington Geology, 20: 2023.Google Scholar
Wei, M. and Smith, D.R. 2010. Review of Syrista Konow (Hymenoptera: Cephidae). Proceedings of the Entomological Society of Washington, 112: 302316.Google Scholar
Wilf, P., Labandeira, C.C., Johnson, K.R., Cúneo, N.R., and Dilcher, D.L. 2005. Richness of plant insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences, 102: 89448948.Google Scholar
Wilf, P., Labandeira, C.C., Johnson, K.R., and Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313: 11121115.Google Scholar
Wilson, M.V.H. and Barton, D.G. 1996. Seven centuries of taphonomic variation in Eocene freshwater fishes preserved in varves: paleoenvironments and temporal averaging. Paleobiology, 22: 535542.Google Scholar
Wolfe, J.A., Forest, C.E., and Molnar, P. 1998. Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geological Society of America Bulletin, 110: 664678.Google Scholar
Wolfe, J.A., Gregory-Wodzicki, K.M., Molnar, P., and Mustoe, G. 2003. Rapid uplift and then collapse in the Eocene of the Okanagan? Evidence from paleobotany. Geological Association of Canada-Mineralogical Association of Canada-Society of Economic Geologists, Joint Annual Meeting, Vancouver, Abstracts, volume 28. P. 533 (CD-ROM).Google Scholar
Zachos, J.C., Dickens, G.R., and Zeebe, R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature, 451: 279283.Google Scholar