Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:19:27.086Z Has data issue: false hasContentIssue false

NEUTRAL LIPID CONTENT AND FATTY ACID COMPOSITION OF 1,2-DIACYLGLYCEROLS IN THE HEMOLYMPH OF THE MALE GYPSY MOTH, LYMANTRIA DISPAR L. (LEPIDOPTERA: LYMANTRIIDAE)

Published online by Cambridge University Press:  31 May 2012

J. Marshall Clark
Affiliation:
Department of Entomology, Femald Hall, University of Massachusetts, Amherst, Massachusetts, USA 01003
J.R. Marion
Affiliation:
Department of Entomology, Femald Hall, University of Massachusetts, Amherst, Massachusetts, USA 01003
L.J. Scarano
Affiliation:
Department of Entomology, Femald Hall, University of Massachusetts, Amherst, Massachusetts, USA 01003
T.L. Potter
Affiliation:
Department of Entomology, Femald Hall, University of Massachusetts, Amherst, Massachusetts, USA 01003
P.F. Gosselin
Affiliation:
Department of Entomology, Femald Hall, University of Massachusetts, Amherst, Massachusetts, USA 01003
J.A. Argentine
Affiliation:
Department of Entomology, Femald Hall, University of Massachusetts, Amherst, Massachusetts, USA 01003
J.S. Elkinton
Affiliation:
Department of Entomology, Femald Hall, University of Massachusetts, Amherst, Massachusetts, USA 01003

Abstract

Qualitative and quantitative changes in the neutral lipid content of hemolymph of gypsy moths, Lymantria dispar L., were assayed in larval, pupal, and adult stages. The major neutral lipid constituents of the hemolymph were 1,2-diacylglycerols and ranged in nominal concentration from 1.6–3.4 (larval), 3.1–4.9(pupal),toamaximumof 19.3 μg lipid per microlitre hemolymph in the adult male. When detected, triacylglycerols and monoacylglycerols never exceed diacylglycerol concentrations. The fatty acid composition of 1,2-diacylglycerols from adult male moths (0–12 h after emergence) was determined as fatty acid methyl esters using gas chromatography/mass spectrometry analysis. Nine fatty acid structures have been assigned. Of these, five are saturated, unbranched, aliphatic fatty acids (C14:0 – C18:0) which comprise 80.5% of the total fatty acid abundance. The remaining four fatty acids consist of two saturated, methyl-branched, aliphatic compounds, a mono-unsaturated aliphatic acid, and a tri-unsaturated, tricyclic, diterpenoid acid.

Résumé

Les modifications qualitatives et quantitatives des stades de larves, pupes et adultes de la teneur en lipides gras neutres de l’hémolymphe de la spongieuse, Lymantria dispar L., ont été étudiées. Les constituants principaux en acides gras neutres de l’hémolymphe ont été les 1,2-diacylglycérols qui ont varié en concentration entre 1,6 à 3,4 μg de lipide par microlitre d’hémolymphe (larves), 3,1 à 4,9 (pupes), jusqu’à une concentration maximum de 19,3 (mâles adultes). Quand discernés, les glycérols triacyliques et le glycérol monoacylique n’ont jamais dépassé la concentration du glycérol diacylique. La composition en acides gras des 1,2-diacylglycérols des mâles adultes (0 à 12 h après l’éclosion) a été déterminée par analyse de chromatographie de gaz/spectrométrie de masse comme des esters méthyliques des acides gras. Neuf structures d’acides gras ont été fixées. De ceux-ci, cinq se trouvent des acides gras aliphatiques saturés, sans branche (C14 : 0 à C18 : 0), qui font 80,5% de l’abondance globale des acides gras. Les quatre acides gras qui restent se composent de deux composés aliphatiques saturés de branches méthyliques, un acide aliphatique non-saturé d’une branche et un acide diterpénoïde tricyclique triplement non-saturé.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amenta, J.S. 1964. A rapid chemical method for quantification of lipids separated by thin-layer chromatography. J. Lipid Res. 5: 270272.10.1016/S0022-2275(20)40251-2CrossRefGoogle ScholarPubMed
Beenakkers, A.M., Van der Horst, D.J., and Van Marrewijk, W.S.A.. 1985. Biochemical processes directed to flight muscle metabolism. pp. 451486 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 10. Pergamon Press, Oxford, U.K. Google Scholar
Bell, R.A., Owens, C.D., Shapiro, M., and Tardif, J.F.. 1981. Development of mass rearing technology. U.S.D.A. Tech. Bull. 1584: 572587.Google Scholar
Christie, W.W. 1982. Lipid Analysis: Isolation, Separation, Identification and Structural Analysis, 2nd ed. Pergamon Press, Oxford, U.K. Google Scholar
Doane, C.C., and McManus, M.L.. (Eds.). 1981. The gypsy moth: research toward integrated pest management. 757 pp. U.S.D.A. For. Serv. Tech. Bull. 1584.Google Scholar
Downer, R.G.H. 1978. Functional role of lipids in insects. pp. 5792 in Rockstein, M. (Ed.), Biochemistry of Insects. Academic Press, New York, NY.10.1016/B978-0-12-591640-0.50007-8CrossRefGoogle Scholar
Gere, G. 1964. Changes of weight, lipid and water content of Lymantria dispar L. with special regard to the chemical and energetic changes during insect metamorphosis and imaginal life. Acta Biol. Hung. 15: 153160.Google Scholar
Gherghel, P., and Petruta, V.. 1986. Dynamics of the fatty acid content in the whole organism of the oak hairy caterpillar (Lymantria dispar) during its development cycle. Stud. Univ. Babes-Bolyoi, Biologia 31(1): 2225.Google Scholar
Karpells, S.T. 1989. Larval serum proteins of the gypsy moth, Lymantria dispar: allometric changes during development suggest several functions of arylphorin and lipophorin. Ph.D. dissertation, Dept. of Zoology, University of Massachusetts, Amherst, MA.Google Scholar
Lehninger, A.L. 1977. pp. 552553 in Biochemistry, 2nd ed. Worth Publ., Inc., New York, NY.Google Scholar
Leonard, D.E., and Doane, C.C.. 1966. An artificial diet for the gypsy moth, Porthetria dispar (Lepidoptera: Lymantriidae). Ann. ent. Soc. Am. 59: 462464.10.1093/aesa/59.3.462CrossRefGoogle Scholar
McLaffery, F.W., and Stauffer, D.B.. 1989. The Wiley/NBS Registry of Mass Spectral Data. John Wiley and Sons, New York, NY.Google Scholar
Quistad, G.B., and Hutson, D.H.. 1986. Xenobiotic Conjugation Chemistry. pp. 204213 in ACS Symposium Series, Vol. 299. American Chemistry Society, Washington, DC.Google Scholar
Rose, A.F., Jones, C.K., Haddin, W.F., and Dreyer, D.L.. 1981. Grindelane diterpenoid acid from Grindella humilis: feeding deterrency of diterpene acids towards aphids. Phytochem. 20(9): 22492253.10.1016/0031-9422(81)80123-9CrossRefGoogle Scholar
Ryhage, R., and Stenhagen, E.. 1960. Mass spectrometry in lipid research. J. Lipid Res. 1(5): 361386.CrossRefGoogle ScholarPubMed
Schwalbe, C.P. 1981. Disparlure-baited traps for survey and detection. U.S.D.A. Tech. Bull. 1584: 542548.Google Scholar
Shapiro, J.P.K., Lau, J.H., and Wells, M.A.. 1988. Lipid transport in insects. A. Rev. Ent. 33: 297318.CrossRefGoogle ScholarPubMed
Wheeler, C.H. 1989. Mobilization and transport of fuels to the flight muscles. pp. 274298 in Goldsworthy, G.J., and Wheeler, C.H. (Eds.), Insect Flight. CRC Press, Inc. Boca Raton, FL.Google Scholar
Simoneit, B.R.T. 1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochim. Cosmochim. Acta 41: 463476.10.1016/0016-7037(77)90285-XCrossRefGoogle Scholar