Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T02:56:21.380Z Has data issue: false hasContentIssue false

Muscidae (Diptera) diversity in Churchill, Canada, between two time periods: evidence for limited changes since the Canadian Northern Insect Survey

Published online by Cambridge University Press:  23 February 2012

Anaïs K. Renaud
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Jade Savage*
Affiliation:
Department of Biological Sciences, Bishop's University, Sherbrooke, Quebec, Canada J1M 1Z7
Robert E. Roughley
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1Corresponding author (e-mail: [email protected]).

Abstract

A survey of muscid flies from Churchill, Manitoba, Canada, in 2007 yielded 155 species. Some components of species richness and composition of this contemporary assemblage were compared with those of a historical (pre-1965) assemblage, and the contribution of the three collecting methods used in the 2007 survey protocol was evaluated. Estimates of species richness indicated that Malaise traps yielded more species than did pan traps or sweep netting, and that species composition did not differ significantly between Malaise trap and pan trap catches. These results suggest that Malaise traps and sweep netting are adequate methods to survey northern Muscidae. We report little difference in estimated species richness and composition between time periods for material collected by sweep netting. When all material from the 2007 survey was pooled, 87% of the pre-1965 species were collected again in 2007. Most nonoverlapping species between time periods were rare in samples and (or) collected by different methods, suggesting a failure to detect as the most likely explanation for their absence in one assemblage. Nevertheless, the proportion of aquatic and semiaquatic species of Spilogona Schnabl was more than twice as high in the list of species not recovered in 2007 than in the pre-1965 assemblage.

Résumé

Un inventaire des diptères muscidés de Churchill, Manitoba, Canada, réalisé en 2007 contient 155 espèces. Nous comparons certains éléments de la richesse et de la composition spécifiques de ce peuplement contemporain avec ceux d'un peuplement du passé (avant 1965). Nous évaluons aussi les contributions de trois méthodes de récolte utilisées dans le protocole de l'inventaire de 2007. Les estimations de la richesse spécifique indiquent que le piège de Malaise capture plus d'espèces que le piège à cuvette et le filet fauchoir, mais que la composition en espèces ne diffère pas entre les récoltes au piège de Malaise et au piège à cuvette. Ces résultats laissent croire que le piège de Malaise et le filet fauchoir constituent des méthodes adéquates pour l'inventaire des Muscidae nordiques. Nous observons peu de différence entre les estimations de la richesse et de la composition spécifiques entre les récoltes au filet fauchoir des deux périodes. Dans l'ensemble combiné du matériel de l'inventaire de 2007, 87% des espèces de la période antérieure à 1965 ont été récoltées de nouveau en 2007. La plupart des espèces qui ne se retrouvent pas à la fois dans les inventaires des deux périodes sont peu abondantes dans les prélèvements et(ou) ont été récoltées par des méthodes différentes, ce qui indique que la non détection est l'explication la plus vraisemblable de leur absence dans l'un ou l'autre des peuplements. Néanmoins, la proportion des espèces aquatiques et semi-aquatiques de Spilogona Schnabl est plus de deux fois plus élevée dans la liste des espèces non retrouvées en 2007 que dans le peuplement d'avant 1965.

[Traduit par la Rédaction]

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased.

References

Alaska Climate Research Center. 2008. Climatological data – monthly time series. Available from http://climate.gi.alaska.edu/Climate/Location/TimeSeries/index.html [accessed 5 July 2010].Google Scholar
Anderson, S. 2010. An evaluation of spatial interpolation methods on air temperature in Phoenix, AZ. Available from http://www.cobblestoneconcepts.com/ucgis2summer/anderson/anderson.htm [accessed 3 November 2010].Google Scholar
Arctic Climate Impact Assessment. (ACIA). 2004. Impact of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge.Google Scholar
Arntfield, P.W. 1975. A revision of Graphomya Robineau-Desvoidy (Diptera: Muscidae) from North America. The Canadian Entomologist, 107: 257302.CrossRefGoogle Scholar
Axford, Y., Briner, J.P., Cooke, C.A., Francis, D.R., Michelutti, H., Miller, J.H., et al. 2009. Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proceedings of the National Academy of Sciences of the United States of America, 44: 1844318446.CrossRefGoogle Scholar
Bale, J.S. 2002. Insects and low temperatures: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society B: Biological Sciences, 357: 349862.CrossRefGoogle ScholarPubMed
Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 116.CrossRefGoogle Scholar
Ballantyne, K. 2009. Whimbrel (Numenius phaeopus) nesting habitat associations, altered distribution, and habitat change in Churchill, Manitoba, Canada. M.Sc. Thesis. Trent University, Peterborough, Ontario, Canada.Google Scholar
Biological Survey of Canada. 2009. Common and historical collecting localities within Canada. Available from http://www.biology.ualberta.ca/bsc/english/locality.htm [accessed 30 October 2010].Google Scholar
Buddle, C. 2009. Bylot Island and the Northern Biodiversity Program: ongoing studies about Arctic entomology and arachnology. Newsletter of the Biological Survey of Canada (Terrestrial Arthropods), 28: 6365.Google Scholar
Brook, R. 2001. Structure and dynamics of the vegetation in Wapusk National Park and the Cape Churchill Wildlife Management Area of Manitoba: community and landscapes. M.Sc. Thesis. University of Manitoba, Winnipeg, Manitoba, Canada.Google Scholar
Brown, B.V. 1993. A further chemical alternative to critical-point-drying for preparing small (or large) flies. Fly Times, 11: 10.Google Scholar
Cannings, S. 2009. Invertebrate samples from Arctic Wildlife Observatories Linking Vulnerable Ecosystems (Arctic WOLVES). Newsletter of the Biological Survey of Canada (Terrestrial Arthropods), 28: 25.Google Scholar
Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11: 265270.Google Scholar
Chao, A., Lee, S.-M. 1992. Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87: 210217.CrossRefGoogle Scholar
Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.-J. 2005. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecology Letters, 8: 148159.CrossRefGoogle Scholar
Collin, J.E. 1930. A revision of the Greenland species of the anthomyid genus Limnophora sens. lat. (Diptera), with figures of the male genitalia of these and many other Palearctic species. Transactions of the Entomological Society of London, 78: 255281.CrossRefGoogle Scholar
Colwell, R.K. 2009. EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. Available from http://purl.oclc.org/estimates [accessed April 2010].Google Scholar
Courtney, G.W., Pape, T., Skevington, J.H., Sinclair, B.J. 2009. Biodiversity of Diptera. In Insect biodiversity: science and society. Edited by R.G. Foottit and P.H. Adler. Blackwell Publishing, Oxford, pp. 185222.CrossRefGoogle Scholar
Danks, H.V. 1981. Arctic arthropods, a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa.Google Scholar
de Groot, R.S., Ketner, P., Ovaa, A.H. 1995. Selection and use of bio-indicators to assess the possible effects of climate change in Europe. Journal of Biogeography, 22: 27072715.CrossRefGoogle Scholar
Disney, R.H.L., Erzinclioglu, Y.Z., de C. Henshaw, D.J., Howse, D., Unwin, D.M., Withers, P., et al. 1982. Collecting methods and the adequacy of attempted fauna surveys, with reference to the Diptera. Field Studies, 5: 607621.Google Scholar
Edye-Rowntree, J., Ayotte, B., Bazlik, E., Bilenduke, M., Brandson, L., Bussell, M., et al. 2006. Resident's perspectives on the Churchill River. Aboriginal Issues Press, University of Manitoba, Winnipeg.Google Scholar
Elberling, H., Olesen, J.M. 1999. The structure of a high latitude plant–flower visitor system: the dominance of flies. Ecography, 23: 314323.CrossRefGoogle Scholar
Eliasson, K. 2004. New waste transfer station for Churchill. Hudson Bay Post, May issue. Available from http://www.polarbearalley.com/churchill-dump.html [accessed 30 October 2010].Google Scholar
Ellison, A.M., Record, S., Arguello, A., Gotelli, N.J. 2007. Rapid inventory of the ant assemblage in a temperate hardwood forest: species composition and assessment of sampling methods. Environmental Entomology, 36: 766775.CrossRefGoogle Scholar
Environment Canada. 2010. Adjusted and homogenized Canadian climate data (AHCCD). Available from http://ec.gc.ca/dccha-ahccd [accessed 10 July 2010].Google Scholar
Environmental Systems Resource Institute (ESRI). 2009. ArcMap 9.2. ESRI, Redlands, California.Google Scholar
Feldhamer, G.A., Thompson, B.C., Chapman, J.A. 2003. Wild mammals of North America: biology, management, and conservation, 2nd ed. Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Fernandez-Triana, J., Smith, M.A., Boudreault, C., Goulet, H., Hebert, P.D.N., Smith, A.C., et al. 2011. A poorly known high-latitude parasitoid wasp community: unexpected diversity and dramatic changes through time. PLoS One, 6: e23719.Google Scholar
Ferrar, P. 1987. A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. Entomonograph 8, Part 1. E.J. Brill/Scandinavian Science Press, Leifen and Copenhagen.Google Scholar
Freeman, T.N. 1958. A historical account of insect collecting in northern Canada. Proceedings of the 10th International Congress of Entomology, (Montreal 1956), 1: 613–617.Google Scholar
Google. 2010. Google Earth 5.1. Available from http://www.google.com/earth/index.html [accessed 10 May 2010].Google Scholar
Gotelli, N.J., Entsminger, G.L. 2010. EcoSim: null models software for ecology. Version 7. Acquired Intelligence Inc. and Kesey-Bear, Jericho, VT. Available from http://garyentsminger.com/ecosim.htm [accessed 15 December 2010].Google Scholar
Gotelli, N.J., Ellison, A.M., Dunn, R.R., Nathan, J., Sanders, N.J. 2011. Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecological News, 15: 1319.Google Scholar
Graham, C.H., Ferrier, S., Huettman, F., Moritz, C., Peterson, A.T. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution, 19: 497503.Google Scholar
Greenberg, B. 1971. Flies and disease. Princeton University Press, Princeton, New Jersey, United States of America.Google Scholar
Grégoire Taillefer, A., Wheeler, T.A. 2010. Effect of drainage ditches on Brachycera (Diptera) diversity in a southern Quebec peatland. The Canadian Entomologist, 142: 160172.CrossRefGoogle Scholar
Hansen, J., Ruedy, R., Sato, M., Lo, K. 2010. Global surface temperature change. Reviews of Geophysics, 48: RG4004. doi:10.1029/2010RG000345.Google Scholar
Hennig, W. 1955–1964. Muscidae. In Die Fliegen der palaearktischen Region 63b 7(2). Edited by E. Lindner. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart. pp. 1–1110.Google Scholar
Hickling, R., Roy, D.B., Hill, J.K., Fox, R., Thomas, C.D. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12: 450455.Google Scholar
Hill, J.K., Thomas, C.D., Huntley, B. 1999. Climate and habitat availability determine 20th century changes in a butterfly's range margin. Proceedings of the Royal Society of London, Series B, Biological Sciences, 266: 11971206.CrossRefGoogle Scholar
Hogsette, J.A., Farkas, R., Coler, R.R. 2002. Development of Hydrotaea aenescens (Diptera: Muscidae) in manure of unweaned dairy calves and lactating cows. Journal of Economic Entomology, 95: 527530.Google Scholar
Høye, T.T., Forchhammer, M.C. 2008. The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations. BMC Ecology, 8: 17.CrossRefGoogle ScholarPubMed
Høye, T.T., Post, E., Meltofte, H., Schmidt, N.M., Forchhammer, M.C. 2007. Rapid advancement of spring in the High Arctic. Current Biology, 17: 449451.Google Scholar
Huckett, H.C. 1932. The North American species of the genus Limnophora Robineau-Desvoidy with descriptions of new species (Muscidae, Diptera). Journal of the New York Entomological Society, 40: 2576, 107–158, 279–339.Google Scholar
Huckett, H.C. 1934a. Revision of the North American species belonging to the genus Coenosia Meigen and related genera (Diptera: Muscidae). Part I. The subgenera Neodexiopsis, Coenosia, Hoplogaster and related genera Allognota, Bithoracochaeta and Schoenomyza. Transactions of the American Entomological Society, 60: 57119.Google Scholar
Huckett, H.C. 1934b. Revision of the North American species belonging to the genus Coenosia Meigen and related genera. (Diptera: Muscidae). Part II. The subgenus Limosia (Coenosia of authors). Transactions of the American Entomological Society, 60: 133198.Google Scholar
Huckett, H.C. 1936. A revision of connectant forms between coenosian and limnophorine genera occurring in North America (Diptera: Muscidae). Journal of the New York Entomological Society, 44: 187223.Google Scholar
Huckett, H.C. 1954. A review of the North American species belonging to the genus Hydrotaea Robineau-Desvoidy (Diptera: Muscidae). Annals of the Entomological Society of America, 47: 316342.Google Scholar
Huckett, H.C. 1965a. Family Muscidae. In A catalog of the Diptera of America north of Mexico. Handbook no. 276. Edited by A. Stone, C.W. Sabrosky, W.W. Wirth, R.H. Foote, and J.T.P. Coulson. U.S. Department of Agriculture, Washington, DC. pp. 869915.Google Scholar
Huckett, H.C. 1965b. The Muscidae of northern Canada, Alaska, and Greenland (Diptera). Memoirs of the Entomological Society of Canada, 42: 3369.Google Scholar
Huckett, H.C., Vockeroth, J.R. 1987. Muscidae. In Manual of Nearctic Diptera. Vol. 2. Coordinated by J.F. McAlpine, B.V. Peterson, G.E. Shewell, H.J. Teskey, J.R. Vockeroth, and D.M. Wood. Agriculture Canada Monograph No. 28. pp. 1115–1131.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). 1990. Climate change, the IPCC scientific assessment. Cambridge University Press, Cambridge.Google Scholar
IPCC. 2007. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
Jaccard, P. 1901. Étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37: 547579.Google Scholar
Jones, S.R., Kunz, S.E. 1997. Importance of supercooling points in the overwintering of the horn fly and stable fly (Diptera: Muscidae). Journal of Medical Entomology, 34: 426429.Google Scholar
Karl, T.R., Knight, R.W., Easterling, D.R., Quayle, R.G. 1996. Indices of climate change for the United States. Bulletin of the American Meteorological Society, 77: 279292.Google Scholar
Larson, B.M.H., Kevan, P.G., Inouye, D.W. 2001. Flies and flowers: taxonomic diversity of anthophiles and pollinators. The Canadian Entomologist, 133: 439465.CrossRefGoogle Scholar
Longino, J.T., Coddington, J., Colwell, R.K. 2002. The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology, 83: 689702.CrossRefGoogle Scholar
Malloch, J.R. 1918. Diptera from southwestern United States. Part IV. Anthomyiidae. Transactions of the American Entomological Society, 44: 263319.Google Scholar
Malloch, J.R. 1919. Report of the Canadian Arctic Expedition 1913–18. Vol. 3. Insects, Part C, Diptera, pp. 60c90c.Google Scholar
Malloch, J.R. 1920. Descriptions of new North American Anthomyiidae (Diptera). Transactions of the American Entomological Society, 46: 133196.Google Scholar
Malloch, J.R. 1923. Flies of the anthomyiid genus Phaonia Robineau-Desvoidy and related genera, known to occur in North America. Transactions of the American Entomological Society, 48: 227282.Google Scholar
Marshall, S., Anderson, R.S., Roughley, R.E., Behan-Pelletier, V., Danks, H.V. 1994. Terrestrial arthropod biodiversity: planning a study and recommended sampling techniques. Supplemental Bulletin of the Entomological Society of Canada, 26: 133.Google Scholar
Menéndez, R., González Megias, A., Hill, J.K., Braschler, B., Willis, S.G., Cillingham, Y., et al. 2006. Species richness changes lag behind climate change. Proceedings of the Royal Society B, 273: 14651470.Google Scholar
Michelsen, V. 2006. Annotated catalogue of the Anthomyiidae, Fanniidae, Muscidae and Scathophagidae (Diptera: Muscoidea) of Greenland. Steenstrupia, 29: 105126.Google Scholar
Newbold, T. 2010. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geography, 34: 322.CrossRefGoogle Scholar
Newton, S.T., Fast, H., Henley, T. 2002. Sustainable development for Canada's Arctic and subarctic communities: a backcasing approach to Churchill, Manitoba. Arctic, 55: 281290.CrossRefGoogle Scholar
Parmesan, C. 1996. Climate and species’ range. Nature, 382: 765766.Google Scholar
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37: 637669.CrossRefGoogle Scholar
Parmesan, C., Ryrholm, N., Stefanescus, C., Hill, J.K., Thomas, C.D., Descimon, H., et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399: 579583.CrossRefGoogle Scholar
Penner, L. 2002. A history of railroads in Manitoba. Paper commissioned by the Transportation Heritage and Technology Centre, Winnipeg, Manitoba.Google Scholar
Pont, A.C. 1984. A revision of the Fanniidae and Muscidae (Diptera) described by Fallén. Entomologica Scandinavica, 15: 277297.Google Scholar
Pont, A.C. 1986. Family Muscidae. In Catalogue of Palaearctic Diptera. Vol. 11. Scathophagidae-Hypodermatidae. Edited by Á. Soós and L. Papp. Akadémiai Kiadó, Budapest, pp. 55215.Google Scholar
Pont, A.C. 1993. Observations on anthophilous Muscidae and other Diptera (Insecta) in Abisko National Park, Sweden. Journal of Natural History, 27: 631643.Google Scholar
Pont, A.C. 2011. The Muscidae described by J.W. Zetterstedt (Insecta: Diptera). Zootaxa, 2852: 183.CrossRefGoogle Scholar
Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M., Saarinen, K. 2009. Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15: 732743.CrossRefGoogle Scholar
Savage, J. 2002. Cleaning up the world: dipteran decomposers. Biodiversity, 3: 1216.Google Scholar
Savage, J. 2003. Revision of the genus Thricops Rondani (Diptera: Muscidae). Insect Systematics and Evolution, supplement 61: 3143.Google Scholar
Savage, J., Wheeler, T.A., Moores, A.M.A., Grégoire Taillefer, A. 2011. Effects of habitat size, vegetation cover, and surrounding land use on Diptera diversity in temperate Nearctic bogs. Wetlands, 31: 101112.Google Scholar
Schmidt, N.M., Berg, T.B., Meltofte, H. 2010. Biobasis, conceptual design and sampling procedure of the biological monitoring programme within Zackenberg Basic, 13th ed. National Environment Research Institute, Aarhus University, Denmark.Google Scholar
Shaffer, H.B., Fisher, R.N., Davidson, C. 1998. The role of natural history collections in documenting species declines. Trends in Ecology and Evolution, 13: 2730.CrossRefGoogle ScholarPubMed
Skidmore, P. 1985. The biology of the Muscidae of the world. Junk Publishers, Dordrecht.Google Scholar
Snow, W.A. 1891. The moose fly – a new Haematobia. The Canadian Entomologist, 23: 8789.Google Scholar
Snyder, F.M. 1949a. Nearctic Helina Robineau-Desvoidy (Diptera: Muscidae). American Museum of Natural History, 94: 112159.Google Scholar
Snyder, F.M. 1949b. Review of Nearctic Mydaea, sensu stricto, and Xenomydaea (Diptera: Muscidae). American Museum Novitates, 1401: 138.Google Scholar
Snyder, F.M. 1954. A review of Nearctic Lispe Latreille (Diptera: Muscidae). American Museum Novitates, 1675: 140.Google Scholar
Thuiller, W. 2007. Climate change and the ecologist. Nature, 448: 550552.Google Scholar
Vockeroth, J.R. 1979. Muscidae. In Canada and its insect fauna. Edited by H.V. Danks. Memoirs of the Entomological Society of Canada. No. 108. Entomological Society of Canada, Ottawa. p. 416.Google Scholar
Webb, J.E. 1956. Observations on some filth flies in the vicinity of Fort Churchill, Manitoba, Canada, 1953–54. Journal of Economic Entomology, 49: 595600.Google Scholar
Westwood, R., Blair, D. 2010. Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada. Environmental Entomology, 39: 11221133.Google Scholar
White, P.J.T., Kerr, J.T. 2006. Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography, 29: 908918.Google Scholar
White, P.J.T., Kerr, J.T. 2007. Human impacts on environment–diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecology and Biogeography, 16: 290299.Google Scholar