Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:00:03.806Z Has data issue: false hasContentIssue false

MORTALITY OF MATURE THIRD-INSTAR CARIBBEAN FRUIT FLY (DIPTERA: TEPHRITIDAE) EXPOSED TO MICROWAVE ENERGY

Published online by Cambridge University Press:  31 May 2012

Jennifer L. Sharp*
Affiliation:
Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Road, Miami, Florida, USA 33158
Jacqueline L. Robertson
Affiliation:
Department of Entomology, University of California, Davis, California, USA 95616
Haiganoush K. Preisler
Affiliation:
Pacific Southwest Research Station, USDA Forest Service, 800 Buchanan Street, West Annex, Albany, California, USA 94710
*
1Author to whom all correspondence should be addressed.

Abstract

Our investigation estimates time–temperature relationships and demonstrates the effect of rapid heating on mortality of Caribbean fruit fly, Anastrepha suspensa (Loew). Mature larvae (third instars) in water were exposed to each of seven temperatures (44, 45, 46, 47, 48, 49, and 50 °C) and each of five power levels (11, 27.5, 55, 88, and 122 W) in a research-quality microwave oven. Controls were immersed in water for 30 min and not exposed to microwave energy. Data were analyzed by a probit model with three explanatory variables. The variables were time to reach target temperature, power, and final temperature. Temperature needed to control the larvae increased as power increased. Of the power–temperature levels, the only combinations that resulted in > 99% mortality were the lowest power (16 W) at 49 or 50 °C and 30 W at 50 °C. Time required for > 99% mortality decreased with increased power. Thus, as power delivered to larvae increased and time needed to reach exposure temperature deceased, percent mortality decreased. We conclude that rapid heating imposes serious constraints on the use of heat-induced mortality; this result raises important questions that must be addressed because quarantine security may be jeopardized.

Résumé

Nous avons procédé à l’estimation des relations temps-température dans le but de démontrer l’effet d’un réchauffement rapide sur la mortalité de la mouche des fruits Anastrepha suspensa (Loew). Des larves à maturité (troisième stade) gardées dans l’eau ont été exposées à l’une de sept températures différentes (44, 45, 46, 47, 48, 49, 50 °C) et à l’une de cinq puissances (11, 27,5, 55, 88 et 122 watts) dans un four à micro-ondes conçu pour la recherche. Des larves témoins ont été plongées dans de l’eau pour 30 minutes sans être exposées aux micro-ondes. Les données ont été analysées au moyen d’un modèle de probits à trois variables explicatives, la durée nécessaire pour atteindre la température désirée, la puissance en watts et la température finale. La température nécessaire au contrôle des larves augmentait en fonction de la puissance. Les seules combinaisons qui ont entraîné une mortalité > 99% réunissaient la puissance minimale (16 watts) et les températures 49 ou 50 °C, ou 30 watts à 50 °C. Le temps requis pour atteindre ce niveau de mortalité diminuait aux puissances plus fortes. Ainsi, à mesure que la puissance augmentait et le temps requis pour atteindre la température désirée diminuait, le pourcentage de mortalité baissait. Nous concluons qu’un réchauffement rapide impose de sérieuses contraintes au contrôle des insectes par la chaleur et que les problèmes que cela soulève doivent être réglés car la sécurité que l’on croit assurée par la quarantaine n’est peut-être pas adéquate.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J.W., Hansen, J.D., Hu, B.K.S., and Brown, S.A.. 1989. High-temperature, forced-air quarantine treatment for papayas infested with tephritid fruit flies (Diptera: Tephritidae). Journal of Economic Entomology 82: 16671674.CrossRefGoogle Scholar
Baird, C.D., and Gaffney, J.J.. 1976. A numerical procedure for calculating heat transfer in bulk loads of fruits or vegetables. ASHRAE (American Society of Heating, Refrigeration, and Air-conditioning Engineers) Transactions 82: 525540.Google Scholar
Buffler, C.R. 1993. Microwave Cooking and Processing: Engineering Fundamentals for the Food Scientist. Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
Calkins, C.O., and Webb, J.C.. 1988. Temporal and seasonal differences in movement of the Caribbean fruit fly larvae in grapefruit and the relationship to detection by acoustics. Florida Entomologist 71: 409416.CrossRefGoogle Scholar
Corcoran, R.J., Heather, N.W., and Heard, T.A.. 1993. Vapor heat treatment for zucchini infested with Bactrocera cucumis (Diptera: Tephritidae). Journal of Economic Entomology 86: 6669.CrossRefGoogle Scholar
Cossins, A.R., and Bowler, K.. 1987. Temperature Biology of Animals. Chapman and Hall, London and New York.CrossRefGoogle Scholar
Crocker, R.L., Morgan, D.L., and Longnecker, M.T.. 1987. Effects of microwave treatment of live oak acorns on germination and on Curculio sp. (Coleoptera: Curculionidae) larvae. Journal of Econonic Entomology 80: 916920.CrossRefGoogle Scholar
Del Estal, P., Vinuela, E., Camacho, C., and Page, E.. 1986 a. Biological effects of microwave treatments on pupae and adults of Ceratitis capitata (Wied.). pp. 115124in Economopoulos, A.P. (Ed.), Fruit Flies: Proceedings of the 2nd International Symposium. Elsevier Science Publishing Co., Amsterdam.Google Scholar
Del Estal, P., Vinuela, E., Page, E., and Camacho, C.. 1986 b. Lethal effects of microwaves on Ceratitis capitata (Wied.) (Dipt., Trypetidae). Influence of developmental stage and age. Journal of Applied Entomology 102: 245253.CrossRefGoogle Scholar
Hansen, J.D., and Sharp, J.L.. 1994. Thermal death in third instars of the Caribbean fruit fly (Diptera: Tephritidae): temperature-time relationships. Journal of Economic Entomology 87: 736740.CrossRefGoogle Scholar
Hayes, C.F., Chingon, H.T.G., Nitta, F.A., and Wang, W.J.. 1984. Temperature control as an alternative to ethylene dibromide fumigation for the control of fruit flies (Diptera: Tephritidae) in papaya. Journal of Economic Entomology 77: 683686.CrossRefGoogle Scholar
Heard, T.A., Heather, N.W., and Corcoran, R.J.. 1991. Dose-mortality relationships for eggs and larvae of Bactrocera tryoni (Diptera: Tephritidae) immersed in hot water. Journal of Economic Entomology 84: 17681770.CrossRefGoogle Scholar
Heard, T.A., Heather, N.W., and Peterson, P.M.. 1992. Relative tolerance to vapor heat treatment of eggs and larvae of Bactrocera tryoni (Diptera: Tephritidae) in mangoes. Journal of Economic Entomology 85: 461463.CrossRefGoogle Scholar
Hennessey, M.K. 1994. Depth of pupation of Caribbean fruit fly (Diptera: Tephritidae) in soils in the laboratory. Environmental Entomology 23: 11191123.CrossRefGoogle Scholar
Hoar, W.S. 1966. General and Comparative Physiology. Prentice-Hall Inc., Englewood Cliffs, NJ.Google Scholar
Jang, E.B. 1986. Kinetics of thermal death in eggs and first instars of three species of fruit flies (Diptera: Tephritidae). Journal of Economic Entomology 79: 700705.CrossRefGoogle Scholar
Kirkpatrick, R.L. 1974. The use of infrared and microwave radiation for the control of stored-product insects. pp. 431437in Proceedings of the 1st International Working Conference on Stored Product Entomology, Savannah, GA.Google Scholar
Moss, J.I., and Chan, H.T. Jr., 1993. Thermal death kinetics of Caribbean fruit fly (Diptera: Tephritidae) embryos. Journal of Economic Entomology 86: 11621166.CrossRefGoogle Scholar
Seo, S.T., Chambers, D.L., Komura, M., and Lee, C.Y.L.. 1970. Mortality of mango weevils in mangoes treated with dielectric heating. Journal of Economic Entomology 63: 19771978.CrossRefGoogle Scholar
Sharp, J.L. 1986. Hot-water treatment for control of Anastrepha suspensa (Diptera: Tephritidae) in mangos. Journal of Economic Entomology 79: 706708.CrossRefGoogle Scholar
Sharp, J.L. 1992. Hot-air quarantine treatment for mangos infested with Caribbean fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 85: 23022304.CrossRefGoogle Scholar
Sharp, J.L. 1993. Hot-air quarantine treatment for ‘Marsh’ white grapefruit infested with Caribbean fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 86: 462464.CrossRefGoogle Scholar
Sharp, J.L. 1994. Microwaves as a quarantine treatment to disinfest commodities. pp. 362364in Champ, B.R., Highley, E., and Johnson, G.I. (Eds.), Postharvest Handling of Tropical Fruits, Proceedings of an International Conference Held at Chiang Mai, Thailand, 19–23 July 1993. ACIAR Proceedings No. 50, Australian Centre for International Agricultural Research, Canberra, Australia.Google Scholar
Sharp, J.L., and Chew, V.. 1987. Time/mortality relationships for Anastrepha suspensa (Diptera: Tephritidae) eggs and larvae submerged in hot water. Journal of Economic Entomology 80: 646649.CrossRefGoogle Scholar
Sharp, J.L., Ouye, M.T., Hart, W., Ingle, S., Hallman, G., Gould, W., and Chew, V.. 1989. Immersion of Florida mangos in hot water as a quarantine treatment for Caribbean fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 82: 186188.CrossRefGoogle Scholar
StatSci. 1992. S-Plus for DOS. StatSci, Seattle, WA.Google Scholar