Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T21:38:00.888Z Has data issue: false hasContentIssue false

MODES OF SEASONAL ADAPTATION IN THE INSECTS: I. WINTER SURVIVAL

Published online by Cambridge University Press:  31 May 2012

H. V. Danks
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1 andBiological Survey Project, Entomological Society of Canada, 202–1316 Carling Avenue, Ottawa, Ontario K1Z7L1

Abstract

Factors affecting the winter survival of temperate-zone insects are reviewed. Certain species suffer high winter mortality especially in cold years, or in years with below normal amounts of insulating snow.

Survival depends on the choice of winter microhabitat and on cold-hardiness, but also on biological features that have not previously been emphasized. These include behaviour that results in placement of overwintering eggs in less severe sites and manufacture of cocoons or other structures that retard inoculation by ice, or desiccation. The possible role of habitat heterogeneity in facilitating population survival is stressed.

Microhabitats are characterized mainly with respect to temperature. They differ markedly among geographic areas and not only in midwinter conditions (including the extent of variation), but also in the time at which entry to the microhabitat in fall is necessary to avoid the risk of frost. The cues that govern entry into these microhabitats include negative phototaxis in many species but have not been subjected to quantitative analysis. Deeper layers are warmer in winter but warm up more slowly in spring and therefore some species, especially in arctic habitats where rapid vernal development is advantageous because the season is short, overwinter in superficial or insolated sites.

Supposed mechanisms of cold- and freezing-injury and its avoidance are reviewed. There are several theories of freezing-injury: many modem theories focus on damage to the cell membrane, apparently caused by changes in cell volume induced during freezing. Injury is avoided by suppression of haemolymph nucleators (enhancing supercooling); or by a variety of methods, especially those involving solutes, minimising damage to frozen tissues. Among these solutes, the prevalence of glycerol in overwintering insects is not unexpected since glycerol is a normal metabolite in animals and can play several possible roles in cryoprotection.

Cold-hardiness is metabolically costly because of these solute adjustments. The cold-hardiness of a taxon depends partly on climatic history during its evolution. Faunal composition at the highest latitudes reflects this dependence.

The winter survival of many high-latitude insects varies rather widely from year to year; but the many detailed studies on cold-hardiness that have been made in the laboratory have seldom been related to natural mortality.

The overwintering stage depends partly on the taxon. It is often fixed within a genus, but less closely within higher taxa. Proportionately more species overwinter as larvae at higher latitudes, especially when the life cycle lasts more than one year. Habitat also influences the overwintering stage: aquatic species generally overwinter as larvae, although species of temporary pools frequently overwinter as eggs. Overwintering in more than one stage is not common.

This review suggests that winter survival of a group depends on latitude (or its climatic equivalent), habitat, and evolutionary history. It might therefore be especially useful to compare cold-hardiness, developmental rates, control of the life cycle and other features among species at the same latitude from each extreme of a series, that contrasts cold-hardy groups in stable habitats (such as Chironomidae) with aerial or vegetation dwelling groups that are not cold-hardy (such as Orthoptera). Future study of winter survival also demands more ecological data (overwintering stage, microhabitat, and conditions experienced there) for a larger sample of the fauna, and the simultaneous measurement of cold-hardiness.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, D. V. 1969. A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in southern England. J. Anim. Ecol. 38: 149170.CrossRefGoogle Scholar
Anon, 1947. Ambient vs tree temperatures. Bull. Am. met. Soc. 28: 370.CrossRefGoogle Scholar
Aoki, K. 1962. Protective action of the polyols against freezing injury in the silkworm egg. Sci. Rep. Tohoku Univ., Ser. IV 28: 2936.Google Scholar
Asahina, E. 1966. Freezing and frost resistance in insects. Chap. 9 in Meryman, H. T. (Ed.), Cryobiology. Academic Press.Google Scholar
Asahina, E. 1969. Frost resistance in insects. In Beament, J. W. L., Trehern, J. E., and Wigglesworth, V. P. (Eds.), Advances in insect physiology, Vol. 6, pp. 150. Academic Press.Google Scholar
Asahina, E. and Tanno, K.. 1964. A large amount of trehalose in a frost-resistant insect. Nature, Lond. 204: 1222.CrossRefGoogle Scholar
*Asahina, E. and Tanno, K.. 1968. [A frost resistant adult insect, Pterocommus molitorius (Hymenoptera, Ichneumonidae).] Low Temp. Sci. Ser. B 26: 8589. (In Japanese.)Google Scholar
Askenmo, C., von Brömssen, A., Ekman, J., and Jansson, C.. 1977. Impact of some wintering birds on spider abundance in spruce. Oikos 28: 9094.CrossRefGoogle Scholar
Atkins, M. D. 1975. On factors affecting the size, fat content and behaviour of a scolytid. Z. angew. Ent. 78: 209218.CrossRefGoogle Scholar
Bächli, G. 1969. Beitrag zur Kenntnis der Uberwinterungsstatten von Insekten im Wald. Vjschr. naturf. Ges. Zurich 114: 455460.Google Scholar
Baier, W. 1965. Trunk temperatures and sun-scald damage on trees. Greenhouse-Garden-Grass 5: 14.Google Scholar
Baker, C. R. B. 1975. Pupal overwintering, diapause and development in two species of Spilosoma. Trans. R. ent. Soc. Lond. 127: 19.CrossRefGoogle Scholar
Bakke, A. 1969. Extremely low supercooling point in eggs of Zeiraphera diniana (Guenée) (Lepidoptera: Tortricidae). Norsk ent. Tidsskr. 16: 81–3.Google Scholar
Barson, G. 1974. Some effects of freezing temperatures on overwintering larvae of the large elm bark beetle (Scolytus scolytus). Ann. appl. Biol. 78: 219224.CrossRefGoogle Scholar
Bartell, D. P., Sanborn, J. R., and Wood, K. A. 1976. Insecticide penetration of cocoons containing diapausing and non-diapausing Bathyplectes curculionis, an endoparasite of the alfalfa weevil. Envir. Ent. 5: 659661.CrossRefGoogle Scholar
*Baust, J. G. 1968. Seasonal variation in the glycerol content and its influence on cold-hardiness in the Alaskan carabid beetle, Pterostichus brevicornis. XIX AAAJ Alaskan Sci. Conf. (Cited by Baust and Miller 1970.)Google Scholar
*Baust, J. G. 1972. Insect freezing protection in Pterostichus brevicornis (Carabidae). Nature (New biol.) 236: 219'221.CrossRefGoogle ScholarPubMed
*Baust, J. G. 1973. Mechanisms of cryoprotection in freezing tolerant animal systems. Cryobiology 10: 197205.CrossRefGoogle ScholarPubMed
*Baust, J. G. 1976. Temperature buffering in an arctic microhabitat. Ann. ent. Soc. Am. 69: 117120.CrossRefGoogle Scholar
Baust, J. G. and Miller, K. L.. 1970. Variations in glycerol content and its influence on cold-hardiness in the Alaskan Carabid beetle Pterostichus brevicornis. J. Insect Physiol. 16: 979990.CrossRefGoogle ScholarPubMed
Baust, J. G. and Miller, K. L.. 1972. Influence of low temperature acclimation on cold-hardiness in the beetle Pterostichus brevicornis. J. Insect Physiol. 18: 19351947.CrossRefGoogle ScholarPubMed
Baust, J. G. and Morrissey, R. E.. 1975. Supercooling phenomenon and water content independence in the overwintering beetle, Coleomegilla maculata. J. Insect Physiol. 21: 17511754.CrossRefGoogle Scholar
Bell, R. A., Nelson, D. R., Borg, T. K., and Cardwell, D. L.. 1975. Wax secretion in non-diapausing and diapausing pupae of the tobacco hornworm Manduca sexta. J. Insect Physiol. 21: 17251729.CrossRefGoogle Scholar
Benham, B. T. 1969. Aggregations of Agonum dorsale Pontoppidan (Col, Agonini) on Lindisfarne (Holy Island). Ent. Rec. J. Var. 81: 9293.Google Scholar
Benham, G. S. Jr., and Farrar, R. J.. 1976. Notes on the biology of Prionus laticollis (Coleoptera: Cerambycidae). Can. Ent. 108: 569576.CrossRefGoogle Scholar
Blatchley, W. S. 1895. Notes on the winter insect fauna of Vigo County, Ind. Psyche, Camb. 7: 247–250, 267–270, 279–281, 336–340, 379–381, 399–401, 434–437, 455458.CrossRefGoogle Scholar
Bogenschütz, H. 1976. Untersuchungen über den Einfluss der Temperatur auf die Entwicklung von Rhyacionia buoliana Den.und Schiff. (Lep. Tortricidae). Z. Pflkrankh. Pflpath. Pflschutz. 83: 2239.Google Scholar
Borror, D. J., Delong, D. M., and Triplehorn, C. A.. 1976. An introduction to the study of insects. Holt, Rinehart, Winston, New York. 4th ed.Google Scholar
Bouyoucos, G. J. 1913. An investigation of soil temperature and some of the most important factors influencing it. Tech. Bull. Mich. agric. Exp. Stn 17. 196 pp.Google Scholar
Bracken, G. R. and Harris, P.. 1969. High palmitoleic acid in Lepidoptera. Nature, Lond. 224: 8485.CrossRefGoogle Scholar
Bradshaw, W. E. 1976. Geography of photoperiodic response in diapausing mosquito. Nature, Lond. 262: 384385.CrossRefGoogle ScholarPubMed
Brooks, C. E. P. 1949. Climate through the ages. Ernest Benn Ltd. (Dover, N.Y. 1970). 395 pp.Google Scholar
Brown, C. J. D., Clothier, W. D., and Alvord, W.. 1953. Observations on ice conditions and bottom organisms in the west Gallatin River, Montana. Proc. Mont. Acad. Sci. 13: 2127.Google Scholar
Brun, G. 1975. Recherches sur l'ecologie de Pimelia bipunctata (Col. Tenebrionide) des dunes du littoral de Camargue. Bull. Ecol. Brunoy 6: 99115.Google Scholar
Brundin, L. 1966. Transantarctic relationships and their significance, as evidenced by chironomid midges, with a monograph of the subfamilies Podonominae and Aphroteniinae and the Austral Heptagyiae. K. svenska Vetensk-Akad. Handl. 11: 7472.Google Scholar
Burges, H. D. 1956. Some effects of the British climate and constant temperatures on the life cycle of Ephestia cautella (Walker). Bull. ent. Res. 46: 813835.CrossRefGoogle Scholar
Burke, M. T., Gusta, L. V., Quamme, H. A., Weiser, C. J., and Li, P. H.. 1976. Freezing and injury in plants. A. Rev. Pl. Physiol. 27: 507528.CrossRefGoogle Scholar
Calkins, C. O. and Kirk, V. M.. 1969. Effect of winter precipitation and temperature on overwintering eggs of northern and western corn rootworms. J. econ. Ent. 62: 541542.CrossRefGoogle Scholar
Carlsson, G. 1962. Studies on Scandinavian blackflies. Opusc. ent. Suppl. 21. 179 pp.Google Scholar
Cary, J. W. and Mayland, H. F.. 1970. Factors influencing freezing of supercooled water in tender plants. Agron. J. 62: 715719.CrossRefGoogle Scholar
Casagrande, R. A. and Haynes, D. L.. 1976. A predictive model for cereal leaf beetle mortality from sub-freezing temperaturs. Envir. Ent. 5: 761769.CrossRefGoogle Scholar
Causse, R. 1976. Étude de la localisation et de la mortalité hivernale des larves de Laspeyresia pomonella L. (Lepidoptera, Tortricidae) en vergers modernes de pommiers de la basse vallée du Rhône. Ann. Zool. Ecol. Anim. 8: 83101.Google Scholar
Chelnikov, V. G. 1975. [The frost resistance of Tomocerus vulgaris (Collem) and the factors determining it.] Zool. Zh. 54: 617620 (in Russian).Google Scholar
Cherry, R. H., Armbrust, E. J., and Ruesink, W. G.. 1976. Lethal temperatures of diapausing Bathyplectes curculionis (Hymenoptera: Ichneumonidae) a parasite of the alfalfa weevil (Coleoptera: Curculionidae). Gt Lakes Ent. 9: 189193.Google Scholar
Chiang, H. C., Benoit, D., and Maki, J.. 1962. Tolerance of adult Drosophila melanogaster to sub-freezing temperatures. Can. Ent. 94: 722727.CrossRefGoogle Scholar
Chino, H. 1957. Conversion of glycogen to sorbitol and glycerol in the diapause egg of the Bombyx silkworm. Nature, Lond. 180: 606607.CrossRefGoogle Scholar
Chino, H. 1958. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori — II. Conversion of glycogen into sorbitol and glycerol during diapause. J. Insect Physiol. 2: 112.CrossRefGoogle Scholar
Clark, L. R., Geier, P. W., Hughes, R. D., and Morris, R. F.. 1967. The ecology of insect populations in theory and practice. Methuen, London.Google Scholar
Clements, A. N. 1963. The physiology of mosquitoes. Pergamon Press, Oxford. 393 pp.Google Scholar
Clifford, H. F. 1966. The ecology of invertebrates in an intermittent stream. Invest. Indiana Lakes Streams 7: 5798.Google Scholar
Clifford, H. F. 1969. Limnological features of a northern brown-water stream with special reference to the life histories of the aquatic insects. Am. Midl. Nat. 82: 578597.CrossRefGoogle Scholar
Cloudsley-Thompson, J. L. 1973. Factors influencing the supercooling of tropical Arthropoda, especially locusts. J. nat. Hist. 7: 471480.CrossRefGoogle Scholar
Cobben, R. H. 1968. Evolutionary trends in Heteroptera. Part I. Eggs, architecture of the shell, gross embryology and eclosion. Centre for Agriculture Publishing and Documentation, Wageningen. 475 pp.Google Scholar
Corbet, P. S. 1962. A biology of dragonflies. Witherby, London.Google Scholar
Corbet, P. S. 1969. Terrestrial microclimate: Amelioration at high latitudes. Science, N.Y. 166: 865866.CrossRefGoogle ScholarPubMed
Corbet, P. S. and Danks, H. V.. 1975. Egg-laying habits of mosquitoes in the high arctic. Mosquito News 35: 814.Google Scholar
Cox, C. B., Healey, I. N., and Moore, P. D.. 1973. Biogeography, an ecological and evolutionary approach. Blackwell, Oxford. 179 pp.Google Scholar
Crawford, C. S. and Riddle, W. A.. 1974. Cold-hardiness in centipedes and scorpions in New Mexico. Oikos 25: 8692.CrossRefGoogle Scholar
Crowe, J. H. and Higgins, R. P.. 1967. The revival of Macrobiotus areolatus Murray (Tardigrada) from the cryptobiotic state. Trans. Am. microsc. Soc. 86: 286294.CrossRefGoogle ScholarPubMed
Daborn, G. R. 1971. Survival and mortality of coenagrionid nymphs (Odonata: Zygoptera) from the ice of an aestival pond. Can. J. Zool. 49: 569571.CrossRefGoogle Scholar
Daborn, G. R. and Clifford, H. F.. 1974. Physical and chemical features of an aestival pond in western Canada. Hydrobiologia 44: 4359.CrossRefGoogle Scholar
Dahl, C. 1970. Distribution, phenology and adaptation to arctic environment in Trichoceridae (Diptera). Oikos 21: 185202.CrossRefGoogle Scholar
Dalenius, P. and Wilson, O.. 1958. On the soil fauna of the Antarctic and of the sub-antarctic Islands. The Oribatidae (Acari). Ark. Zool. (2) 11: 393425.Google Scholar
Danks, H. V. 1971 a. Overwintering of some north temperate and arctic Chironomidae. I. The winter environment. Can. Ent. 103: 589604.CrossRefGoogle Scholar
Danks, H. V. 1971 b. Life history and biology of Einfeldia synchrona (Diptera: Chironomidae). Can. Ent. 103: 15971606.CrossRefGoogle Scholar
Danks, H. V. 1971 c. Overwintering of some north temperate and arctic Chironomidae. II. Chironomid biology. Can. Ent. 103: 18751910.CrossRefGoogle Scholar
Danks, H. V. and Byers, J. R.. 1972. Insects and arachnids of Bathurst Island, Canadian Arctic Archipelago. Can. Ent. 104: 8188.CrossRefGoogle Scholar
Danks, H. V. and Oliver, D. R.. 1972. Seasonal emergence of some high arctic Chironomidae (Diptera). Can. Ent. 104: 661686.CrossRefGoogle Scholar
Dasch, C. E. 1971. Hibernating Ichneumonidae of Ohio. Ohio J. Sci. 71: 270'283.Google Scholar
Davis, J. W., Cowan, C. B. Jr., and Parencia, C. R.. 1975. Boll weevil: survival in hibernation cages and in surface woods trash in central Texas. J. econ. Ent. 68: 797799.CrossRefGoogle Scholar
Decamps, H. 1967. Introduction à l'étude écologique des Trichoptères des Pyrénées. Ann. Limnol. 3: 101176.CrossRefGoogle Scholar
Deichmann, H. 1896. Ostrogronlanske Insekter: Korte Bemaerkninger over Insektlivet. Meddr Grønland 19: 97104.Google Scholar
Dennys, A. A. 1927. Some notes on the hibernating habits of insects in dry trees in the interior of British Columbia. Proc. ent. Soc. Br. Columb. 24: 1925.Google Scholar
Deseo, K. V. 1973. Reproductive activity of codling moth Laspeyresia pomonella L. (Lepidoptera; Tortricidae) exposed to short photophase during preimaginal state. Acta Phytopathol. Acad. Sci. Hung. 8: 193206.Google Scholar
Deseo, K. V. and Saringer, G. Y.. 1975. Photoperiodic effect on fecundity of Laspeyresia pomonella, Grapholitha funebrana and G. molesta: the sensitive period. Entomologia exp. appl. 18: 187194.CrossRefGoogle Scholar
DeVries, A. L. 1971. Glycoproteins as biological anti-freeze agents in antarctic fishes. Science, N.Y. 172: 115//ÎÎÉÉ/CrossRefGoogle Scholar
DeVries, A. L. 1976. Antifreezes in cold-watr fishes. Oceanis 19: 2332.Google Scholar
DeVries, A. L. and Wohlschlag, D. E.. 1969. Freezing resistance in some antarctic fishes. Science, N.Y. 163: 10731075.CrossRefGoogle ScholarPubMed
Dorsey, N. E. 1948. The freezing of supercooled water. Trans. Am. phil. Soc. 38: 247328.CrossRefGoogle Scholar
Downes, J. A. 1964. Arctic insects and their environment. Can. Ent. 96: 280307.CrossRefGoogle Scholar
Downes, J. A. 1965. Adaptations of insects in the Arctic. A. Rev. Ent. 10: 257274.CrossRefGoogle Scholar
Drooz, A. T. and Solomon, J. D.. 1964. Effects of solarisation on elm spanworm eggs (Lepidoptera: Geometridae). Ann. ent. Soc. Am. 57: 9598.CrossRefGoogle Scholar
Dubach, P., Smith, F., Pratt, D., and Stewart, C. M.. 1959. Possible role of glycerol in the winter hardiness of insects. Nature, Lond. 184: 288289.CrossRefGoogle Scholar
Duffield, R. M. and Nordin, J. H.. 1970. Hibernation and the production of glycerol in the Ichneumonidae. Nature, Lond. 228: 381.CrossRefGoogle ScholarPubMed
Duman, J. G. 1977. The role of macromolecular antifreeze in the darkling beetle, Meracantha contracta. J. comp. Physiol. (B) 115: 279286.CrossRefGoogle Scholar
Duman, J. G. and DeVries, A. L.. 1975. The role of macromolecular antifreezes in cold water fishes. Comp. Biochem. Physiol. 52: 193200.CrossRefGoogle ScholarPubMed
Dutrieu, T. 1961. Action de la froid sur le taux de trehalose contenu dans les embryons de Bombyx mori. C. r. hebd. Séanc. Acad. Sci., Paris 253: 30713073.Google Scholar
Dutrieu, T. 1962. Role du froid et de l'anaerobiose sur le taux de trehalose de Bombyx mori. C. r. Séanc. Soc. Biol. 156: 20202023.Google Scholar
Edgar, W. and Loenen, M.. 1974. Aspects of the overwintering habits of the wolf spider Pardosa lugubris. J. Zool., Lond. 172: 383388.CrossRefGoogle Scholar
Eggert, R. 1944. Cambial temperatures of peach and apple trees in winter. Proc. Am. Soc. hort. Sci. 45: 3336.Google Scholar
Eguagie, W. E. 1974. Cold hardiness of Tingis ampliata (Heteroptera: Tingidae). Entomologia exp. appl. 17: 204214.CrossRefGoogle Scholar
Elsner, R. W. and Pruitt, W. O.. 1959. Some structural and thermal characteristics of snow shelters. Arctic 12: 2027.CrossRefGoogle Scholar
Fay, H. T. 1862. On winter collecting. Proc. ent. Soc. Philad. 5: 194198.Google Scholar
Feeney, R. E. 1974. A biological antifreeze. Am. Scient. 62: 712719.Google ScholarPubMed
Ford, E. B. 1945. Butterflies. Collins, London. 368 pp.Google Scholar
Foster, D. R. and Crowder, L. A.. 1976. Fatty acids of diapause and nondiapause pink bollworm larvae, Pectinophora gossypiella (Saunders). Comp. Biochem. Physiol. 558: 519521.Google Scholar
Frankos, V. H. and Platt, A. P.. 1976. Glycerol accumulation and water content in larvae of Limenitis archippus: important in winter survival. J. Insect Physiol. 22: 632638.CrossRefGoogle Scholar
Freeman, T. N. 1958. The distribution of arctic and subarctic butterflies. Proc. Xth int. Congr. Ent. 1: 659671.Google Scholar
Freuler, J. 1975. Zeitliches Auftreten der verschiedenen Hylemya-Arten in der welschen Schweiz. Mitt. schweiz. ent. Ges. 48: 323340.Google Scholar
Frick, J. H. and Sauer, J. R.. 1973. Examination of a biological cryostat/nanoliter osmometer for use in determining the freezing point of insect haemolymph. Ann. ent. Soc. Am. 66: 781783.CrossRefGoogle Scholar
Frye, R. H., Flake, H. W., and Germain, C. J.. 1974. Spruce beetle winter mortality resulting from record low temperatures in Arizona. Envir. ent. 3: 752754.CrossRefGoogle Scholar
Fuller, W. A., Stebbins, L. L., and Dyke, G. R.. 1969. Overwintering of small mammals near Great Slave Lake, Northern Canada. Arctic 22: 3455.CrossRefGoogle Scholar
Geier, P. W. 1961. Numerical regulation of populations of codling moth, Cydia pomonella (L.). Nature, Lond. 190: 561562.CrossRefGoogle Scholar
Geier, P. W. 1964. Population dynamics of codling moth Cydia pomonella (L.) (Tortricidae) in Australian Capital Territory. Aust. J. Zool. 12: 381416.CrossRefGoogle Scholar
Geiger, R. 1965. The climate near the ground. Harvard Univ. Press, Cambridge, Mass.Google Scholar
George, M. F., Burke, M. J., and Weiser, C. J.. 1974. Supercooling in overwintering azalea flower buds. Pl. Physiol. 54: 2935.CrossRefGoogle ScholarPubMed
Giani, N. and Laville, H.. 1973. Cycle biologique et production de Sialis lutaria L. (Megaloptera) dans le lac de Port Bielh (Pyrénées Centrales). Ann. Limnol. Stn Biol. Lac Oredon, Fac. Sci., Toulouse 9: 4561.Google Scholar
Gibo, D. L. 1976. Cold hardiness in fall and winter adults of the social wasp Polistes fuscatus (Hymenoptera: Vespidae) in southern Ontario. Can. Ent. 108: 801806.CrossRefGoogle Scholar
Glendenning, R. 1944. The parsnip webworm (Depressaria heracleana) and its control in British Columbia (Lepidoptera: Oecophoridae). Proc. ent. Soc. Br. Columb. 41: 2628.Google Scholar
Glinyanaya, Ye. I. 1975. [The importance of daylength in the control of seasonal cycles and diapause in some Psocoptera]. Ent. Obozr. 54: 1722 (in Russian). [Translation in Ent. Rev. 54(1): 10–13.]Google Scholar
Green, G. W. 1962. Low winter temperatures and the European pine shoot moth, Rhyacionia buoliana (Schiff.) in Ontario. Can. Ent. 94: 314336.CrossRefGoogle Scholar
Grevillius, A. Y. 1905. Zur Kenntnis der Biologie der Goldafters (Euproctis chrysorrhoea (L) Hb.) und der durch denselben verursachten Beschädigungen. Bot. Zbl. 218): 222322.Google Scholar
Grum, L. 1975. Mortality patterns in carabid populations. Ekol. pol. 23: 649665.Google Scholar
Hagen, K. S. 1962. Biology and ecology of predacious Coccinellidae. A. Rev. Ent. 7: 289326.CrossRefGoogle Scholar
Hagvar, S. 1971. Field observations on the ecology of a snow insect Chionea araneoides Dalm. (Diptera; Tipulidae). Nork ent. Tidsskr. 18: 3337.Google Scholar
Hanec, W. 1966. Cold-hardiness in the forest tent caterpillar, Malacosoma disstria Hübner (Lasiocampidae, Lepidoptera). J. Insect Physiol. 12: 14431449.CrossRefGoogle Scholar
Hansen, T. 1973. Variations in glycerol content in relation to cold hardiness in the larvae of Petrova resinella L. (Lepidoptera, Tortricidae). Eesti NSV Tead. Akad Toim. Biol. 22: 105112.Google Scholar
Harcourt, D. G. and Cass, L. M.. 1966. Photoperiodism and fecundity in Plutella maculipennis (Curt.). Nature, Lond. 210: 217218.CrossRefGoogle Scholar
Hare, J. R. and Thomas, M. K.. 1974. Climate Canada. Wiley, Toronto. 256 pp.Google Scholar
Hart, G. and Lull, H. W.. 1963. Some relationships among air, snow and soil temperatures and soil frost. U.S. For. Serv. Res. Note, Northeast For. Exp. Stn Ne-3. 4 pp.Google Scholar
Harvey, R. B. 1923 a. Cambial temperatures of trees in winter and their relation to sun scald. Ecology 4: 261265.CrossRefGoogle Scholar
Harvey, R. B. 1923 b. Relation of the color of bark to the temperature of the cambium in winter. Ecology 4: 391394.CrossRefGoogle Scholar
Harvey, W. R. 1962. Metabolic aspects of insect diapause. A. Rev. Ent. 7: 5780.CrossRefGoogle Scholar
Harwood, R. F. and Takata, N.. 1965. Effect of photoperiod and temperature on fatty acid composition of the mosquito Culex tarsalis. J. Insect Physiol. 11: 711716.CrossRefGoogle ScholarPubMed
Heber, U. 1968. Freezing injury in relation to loss of enzyme activities and protection against freezing. Cryobiology 5: 188201.CrossRefGoogle ScholarPubMed
Henriksen, K. L. 1939. A revised index of the insects of Greenland. Meddr Grønland 119(10). 119 pp.Google Scholar
Hickman, J. C. 1975. Environmental unpredictability and plastic energy allocation strategies in the annual Polygonum cascadense (Polygonaceae). J. Ecol. 63: 689702.CrossRefGoogle Scholar
Hille Ris Lambers, D. 1955. Hemiptera. 2. Aphididae. Zoology Iceland 3(52a): 129.Google Scholar
Hochachka, P. W. and Somero, G. N.. 1973. Strategies of biochemical adaptation [esp. Chap. 7: pp. 179–270. Temperature]. W. B. Saunders, Philadelphia.Google Scholar
Hodek, I. 1973. Biology of Coccinellidae. W. Junk, The Hague, Neth. 260 pp.CrossRefGoogle Scholar
Hodek, I. and Cerkasov, J.. 1961. Prevention and artificial induction of imaginal diapause in Coccinella septempunctata L. (Col: Coccinellidae). Entomologia exp. appl. 4: 179190.CrossRefGoogle Scholar
Holmquist, A. M. 1926. Studies in arthropod hibernation. I. Ecological survey of hibernating species from forest environments of the Chicago region. Ann. ent. Soc. Am. 19: 395426.CrossRefGoogle Scholar
Holmquist, A. M. 1928. Notes on the biology of the muscid fly Pyrellia serena Meigen, with special reference to its hibernation. Ann. ent. Soc. Am. 21: 660667.CrossRefGoogle Scholar
Holmquist, A. M. 1931. Studies in arthropod hibernation. III. Temperatures in forest hibernacula. Ecology 12: 387400.CrossRefGoogle Scholar
Hopkins, A. D. 1938. Bioclimatics. A science of life and climate relations. Misc. Publs U.S. Dep. Agric. 280. 188 pp.Google Scholar
House, H. L., Riordan, D. F., and Barlow, J. S.. 1958. Effects of thermal conditioning and of degree of saturation of dietary lipids on resistance of an insect to high temperature. Can. J. Zool. 36: 629632.CrossRefGoogle Scholar
Houseweart, M. W. and Kulman, H. M.. 1976. Life tables of the yellowheaded spruce sawfly, Pikonema alaskensis (Rohwer) (Hymenoptera: Tenthredinidae) in Minnesota. Envir. ent. 5: 859867.CrossRefGoogle Scholar
Hurd, P. D. Jr, and Lindquist, E. E.. 1958. Analysis of soil invertebrate samples from Barrow, Alaska. Final report (duplicated). Arctic Inst. N. Am. Project Onr-173 and Onr-193.Google Scholar
Hutchinson, G. E. 1957. A treatise on limnology. Vol. I. Wiley, New York.Google Scholar
Hynes, H. B. N. 1970. The ecology of stream insects. A. Rev. Ent. 15: 2542.CrossRefGoogle Scholar
Hynes, H. B. N. 1976. Biology of Plecoptera. A. Rev. Ent. 21: 135153.CrossRefGoogle Scholar
Il'Inskaya, N. B. 1973. [The resistance of Chironomus plumosus larval muscle tissue to some chemical agents in different seasons] (in Russian, Engl. summary). Tsitologiya 15: 531537.Google Scholar
Il'Inskaya, N. B. 1975. [The cold and salt tolerance of the muscles of Ostrinia nubilalis Hb (Lepidoptera, Pyralidae) during overwintering.] Ent. Obozr. 54: 481493 (in Russian). (Translation in Ent. Rev. 54(3): 1–9.)Google Scholar
Il'Inskaya, N. B. and Maksimova, F. L.. 1974. [The dynamics of salt and alcohol resistance of muscles of the midge Chironomus plumosus, during hibernation] (in Russian, English summary). Tsitologiya 16: 833837.Google Scholar
Illies, J. 1965. Phylogeny and zoogeography of the Plecoptera. A. Rev. Ent. 10: 117140.CrossRefGoogle Scholar
Ingram, B. R. 1976. Life histories of three species of Lestidae in North Carolina, United States (Zygoptera). Odonatologica 5: 231244.Google Scholar
Irving, L. 1972. Arctic life of birds and mammals. Springer-Verlag, New York.CrossRefGoogle Scholar
Ivancich-Gambaro, P. 1975. Observations on the biology and behaviour of the predaceous mite Typhlodromus italicus (Acarina; Phytoseiidae) in peach orchards. Entomophaga 20: 171177.CrossRefGoogle Scholar
Jensen, R. E., Savage, E. F., and Hayden, R. A.. 1970. The effect of certain environmental factors on cambium temperatures of peach trees. J. Am. hort. Sci. 95: 286292.CrossRefGoogle Scholar
Johansen, F. 1911. The insects of the ‘Danmark’ expedition. I. General remarks of the life of insects and arachnids in North-east Greenland. Meddr Grønland 43: 3554.Google Scholar
Johansen, F. 1921. Insect life on the western arctic coast of America. Part K, Vol. III (insects) of — Report of the Canadian Arctic Expedition 1913–18. Ottawa. 61 pp.Google Scholar
Johnson, C. G. 1969. Migration and dispersal of insects by flight. Methuen, London.Google Scholar
Jonsson, B. and Sandlund, T.. 1975. Notes on winter activity of two Diamesa spp. (Dipt., Chironomidae) from Voss, Norway. Norw. J. Ent. [Norsk ent. Tidsskr.] 22: 16.Google Scholar
Kaku, S. 1969. Sexual difference in cold hardiness in overwintering larvae of giant bagworm moth. Sieboldia, 4: 3947.Google Scholar
Kaku, S. 1975. Analysis of freezing temperature distribution in plants. Cryobiology 12: 154159.CrossRefGoogle ScholarPubMed
Kamler, E. 1967. Distribution of Plecoptera and Ephemeroptera in relation to altitude above mean sea level and current speed in mountain waters. Polskie Archwm. Hydrobiol. 14(27): 2942.Google Scholar
Kaufmann, T. 1971. Hibernation in the arctic beetle Pterostichus brevicornis in Alaska. J. Kans. ent. Soc. 44: 8192.Google Scholar
Kevan, P. G. and Shorthouse, J. D.. 1970. Behavioural thermoregulation by high arctic butterflies. Arctic 23: 268279.CrossRefGoogle Scholar
Khoo, S. G. 1968. Experimental studies on diapause in stoneflies. I. Nymphs of Capnia bifrons (Newman). Proc. R. ent. Soc. Lond. 43: 4048.Google Scholar
Kirchner, W. and Kestler, P.. 1969. Untersuchungen zur Kalteresistenz der Schilfradspinne Araneus cornutus (Araneidae). J. Insect Physiol. 15: 4153.CrossRefGoogle Scholar
Kirchner, W. and Kullmann, E.. 1975. Überwinterung und Kalteresistenz der Harbennetzspinnenarten Theridion impressum (L. Koch) und Theridion sisyphium (Clerk) (Araneae, Theridiidae). Decheniana 127: 241250.CrossRefGoogle Scholar
Kirk, V. M. 1974. Biology of a groundbeetle, Harpulus erraticus. Ann. ent. Soc. Am. 67: 2428.CrossRefGoogle Scholar
Kozàr, F. 1974. The role of extreme temperature fluctuations in the population dynamics of overwintering eggs of Panonychus ulmi Koch. Acta phytopath. Acad. Sci. Hung. 9: 363367.Google Scholar
Kulagin, N. 1897. Zur Biologie Ocneria dispar in Russland. Illust. Wschr. Ent. 2: 418420.Google Scholar
Kurtak, D. 1974. Overwintering of Simulium pictipes Hagen (Diptera: Simuliidae) as eggs. J. med. Ent. 11: 383384.CrossRefGoogle ScholarPubMed
Kuuzik, A. and Kopvillem, K.. 1970. [Experimental data on the cold hardiness of the eggs of the European pine sawfly Neodiprion sertifer Geoffr. from the Estonian SSR.] Eesti NSV Akad. Toim., Biol. 19: 329335. (In Russian.)Google Scholar
Lafage, J. P., Crowder, L. A., and Watson, T. F.. 1974. Amino acids and total nitrogen of diapause and nondiapause larvae of the pink bollworm, Pectinophora gossypiella. Ann. ent. Soc. Am. 67: 472474.CrossRefGoogle Scholar
Lambremont, E. N., Blum, M. S., and Schrader, R. M.. 1964. Storage and fatty acid composition of triglycerides during adult diapause of the boll weevil. Ann. ent. Soc. Am. 57: 526532.CrossRefGoogle Scholar
Landa, V. 1968. Developmental cycles of central European Ephemeroptera and their interrelations. Acta ent. Bohemoslov. 4: 276284.Google Scholar
Lavandier, P. and Pujol, J. Y.. 1975. Cycle biologique de Drusus rectus (Trichoptera) dans les pyrénées centrales: influence de la température et de l'enneigement. Ann. Limnol. Stn Biol. Lac. Oredon, Fac. Sci., Toulouse 11: 255262.Google Scholar
Lavery, M. A. and Costa, R. R.. 1976. Life history of Parargyractis canadensis Munroe (Lepidoptera: Pyralidae). Am. Midl. Nat. 96: 407417.CrossRefGoogle Scholar
Lees, A. D. 1956. The physiology and biochemistry of diapause. A. Rev. Ent. 1: 116.CrossRefGoogle Scholar
Leonard, D. E. 1972. Survival in a gypsy moth population exposed to low winter temperatures. Envir. ent. 1: 549554.CrossRefGoogle Scholar
Levins, R. 1969. Dormancy as an adaptive strategy. Symp. Soc. exp. Biol. 23: 110.Google ScholarPubMed
Levitt, J. 1958. Frost, drought and heat resistance. In Heilbrun, L. V. and Weber, F. (Eds.), Handbuch der Plasmaforschung, Vol. 8, No. 6, pp. 188. Springer-Verlag, Vienna.Google Scholar
Levitt, J. 1962. A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J. theoret. Biol. 3: 355391.CrossRefGoogle Scholar
Lewis, D. J. and Bennett, G. F.. 1974. The blackflies (Diptera: Simuliidae) of insular Newfoundland. II. Seasonal succession and abundance in a complex of small streams in the Avalon Peninsula. Can. J. Zool. 52: 11071113.CrossRefGoogle Scholar
Lewis, T. and Navas, D. E.. 1962. Thysanoptera populations overwintering in hedge bottoms, grass litter and bark. Ann. appl. Biol. 50: 299311.CrossRefGoogle Scholar
Lovelock, J. E. 1953 a. The haemolysis of human red blood cells by freezing and thawing. Biochim. biophys. Acta 10: 414426.CrossRefGoogle ScholarPubMed
Lovelock, J. E. 1953 b. The mechanism of protective action of glycerol against freezing and thawing. Biochim. biophys. Acta 11: 2836.CrossRefGoogle ScholarPubMed
Lovelock, J. E. 1957. The denaturation of lipid protein complexes as a cause of damage by freezing. Proc. R. Soc. 147: 427433.Google ScholarPubMed
Luck, R. F. and Dahlsten, D. L.. 1974. Bionomics of the pine needle scale, Chionaspis pinifoliae, and its natural enemies at South Lake Tahoe, Calif. Ann. ent. Soc. Am. 67: 309316.CrossRefGoogle Scholar
L'vovskiy, A. L. 1975. [The food specialisation and the seasonal cycles of the Oecophoridae (Lepidoptera) of the European part of the U.S.S.R.] Ent. Obozr. 54: 127136. (In Russian.) (Translation in Ent. Rev. 54(1): 91–97.)Google Scholar
Lyman, R. E. 1955. Seasonal distribution and life cycles of Ephemeroptera. Ann. ent. Soc. Am. 48: 380391.CrossRefGoogle Scholar
Mackay, J. R. and Mackay, D. K.. 1974. Snow cover and ground temperatures, Garry Island, N.W.T. Arctic 27: 287297.CrossRefGoogle Scholar
MacLean, S. F. 1973. Life cycle and growth energetics of the arctic cranefly Pedicia hannai antennata. Oikos 24: 436443.CrossRefGoogle Scholar
MacLean, S. F. and Pitelka, F. A.. 1971. Seasonal patterns of abundance of tundra arthropods near Barrow. Arctic 24: 1940.CrossRefGoogle Scholar
MacLellan, C. R. 1959. Woodpeckers as predators of the codling moth in Nova Scotia. Can. Ent. 91: 673680.CrossRefGoogle Scholar
MacPhee, A. W. 1961. Mortality of winter eggs of the European red mite Panonychus ulmi (Koch) at low temperatures, and its ecological significance. Can. J. Zool. 39: 229243.CrossRefGoogle Scholar
MacPhee, A. W. 1964. Cold-hardiness, habitat and winter survival of some orchard arthropods in Nova Scotia. Can. Ent. 96: 617625.CrossRefGoogle Scholar
Mail, G. A. 1930. Winter soil temperatures and their relation to subterranean insect survival. J. agric. Res. 41: 571592.Google Scholar
Mail, G. A. 1932. Winter temperature gradients as a factor in insect survival. J. econ. Ent. 25: 10491053.CrossRefGoogle Scholar
Mallach, N. 1974. Zur Kenntnis der Kleinen Kiefern-Buschhornblattevespe Diprion (Microdiprion) pallipes (Fall.) (Hym. Diprionidae). Teil. 3. Populationsökologie. Z. angew. Ent. 75: 337380.CrossRefGoogle Scholar
Mani, M. S. 1962. Introduction to high altitude entomology. Methuen, London.Google Scholar
Mansingh, A. 1967. Changes in the free amino acids of the haemolymph of Antherea pernyi during induction and termination of diapause. J. Insect Physiol. 13: 16451655.CrossRefGoogle Scholar
Mansingh, A. 1971. Physiological classification of dormancies in insects. Can. Ent. 103: 9831009.CrossRefGoogle Scholar
Mansingh, A. 1974. Studies on insect dormancy: II. Relationship of cold-hardiness to diapause and quiescence in the eastern tent caterpillar Malacosoma americanum (Fab.) (Lasiocampidae: Lepidoptera). Can. J. Zool. 52: 629637.CrossRefGoogle ScholarPubMed
Mansingh, A. and Smallman, B. N.. 1972. Variation in polyhydric alcohol in relation to diapause and cold-hardiness in the larvae of Isia isabella. J. Insect Physiol. 18: 15651571.CrossRefGoogle Scholar
Mansingh, A. and Steele, R. W.. 1973. Studies on insect dormancy. I. Physiology of hibernation in the larvae of the blackfly Prosimulium mysticum Peterson. Can. J. Zool. 51: 611618.CrossRefGoogle Scholar
Mason, L. G. 1973. The habitat and phenetic variation in Phymata americana Melin (Heteroptera). Syst. Zool. 22: 271279.CrossRefGoogle Scholar
Matthey, W. 1974. Contribution à l'écologie de Gerris remigis Say sur deux étangs des montagnes Rocheuses. Mitt. schweiz. ent. Ges. 47: 8595.Google Scholar
Mazur, P. 1970. Cryobiology: the freezing of biological systems. Science, N.Y. 168: 939949.CrossRefGoogle ScholarPubMed
McAlpine, J. F. 1965. Insects and related terrestrial invertebrates of Ellef Ringnes island. Arctic 18: 73103.CrossRefGoogle Scholar
McEnroe, W. D. 1975. The effect of mean winter temperature around 0°C. on the population size of the American dog tick, Dermacentor variabilis, Say (Acarina: Ixodidae). Acarologia 17: 208219.Google Scholar
Meryman, H. T. 1968. Modified model for mechanism of freezing injury in erythrocytes. Nature, Lond. 218: 333336.CrossRefGoogle ScholarPubMed
Meryman, H. T. 1966. Review of biological freezing. Chap. 1, pp. 1–114, in Meryman, H. T. (Ed.), Cryobiology. Academic Press, New York.Google Scholar
Meryman, H. T. 1971. Cryoprotective agents. Cryobiology 8: 173183.CrossRefGoogle ScholarPubMed
Meryman, H. T. 1974. Freezing injury and its prevention in living cells. A. Rev. Biophys. Bioengng 3: 341363.CrossRefGoogle ScholarPubMed
Miller, L. K. 1969. Freezing tolerance in an adult insect. Science, N.Y. 166: 105106.CrossRefGoogle Scholar
Miller, L. K. and Smith, J. S.. 1975. Production of threitol and sorbitol by an adult insect: association with freezing tolerance. Nature, Lond. 258: 519520.CrossRefGoogle ScholarPubMed
Miller, R. M. and Foote, B. A.. 1975. Biology and immature stages of eight species of Lauxaniidae (Diptera). I. Biological observations. Proc. ent. Soc. Wash. 77: 308328.Google Scholar
Minder, I. L. 1973. [Long term diapause of the fox-coloured sawfly (Neodiprion sertifer).] Zool Zh. 52: 16611670. (In Russian, English summary.)Google Scholar
Minder, I. L. and Chesnek, S. I.. 1970. [Dependence of cold-resistance of the Colorado beetle from the time of diapause] Zool. Zh. 49: 855–61. (In Russian, English summary.)Google Scholar
Mitchell, R. 1975. Models for parasite populations, pp. 4965, in Price, P. (Ed.), Evolutionary strategies of parasitic insects and mites. Plenum, New York.CrossRefGoogle Scholar
Morrissey, R. E. and Baust, J. A.. 1976. The ontogeny of cold tolerance in the gall fly Eurosta solidaginis. J. Insect Physiol. 22: 431437.CrossRefGoogle Scholar
Müller, H. H. 1962. Über den saisondimorphen Entwicklungszyklus und die aufhehung der Diapause bei Aleurochiton complanatus (Baerensprung) (Homoptera, Aleyrodidae). Entomologia exp. appl. 5: 124138.CrossRefGoogle Scholar
Nash, T. 1966. Chemical constitution and physical properties of compounds able to protect living cells against damage due to freezing and thawing. pp. 179210, in Meryman, H. T. (Ed.), Cryobiology. Academic Press, New York.Google Scholar
Neudecker, C. 1974. Das Präferenzverhalten von Agonum assimile Payk. (Carab. Coleopt.) in Temperatur-, Feuchtigkeits - und Helligkeits - gradienten. Zool. Jb. Abt. Syst. Okol. Geogr. Tiere 101: 609627.Google Scholar
Neuenschwander, P. 1975. Influence of temperature on the immature stages of Hemerobius pacificus. Envir. ent. 4: 215220.CrossRefGoogle Scholar
Neuenschwander, P. 1976. Biology of the adult Hemerobius pacificus. Envir. ent. 5: 96100.CrossRefGoogle Scholar
Nordin, J. H., Duffield, R., Freedman, N., Gelb, W., and Brants, J. F.. 1970. Enzyme activity in cryobiological systems. Studies on glycolytic enzymes and low temperature-induced glycerol accumulation. Cryobiology 6: 373384.CrossRefGoogle ScholarPubMed
Novak, I. and Spitzer, K.. 1971. The relationship between migration and diapause during phylogeny and ontogeny of some Lepidoptera. J. Res. Lepid. 10: 181184.CrossRefGoogle Scholar
Nuorteva, P. 1972. A three year survey of the duration of development of Cynomyia mortuorum (L.) (Diptera, Calliphoridae) in the conditions of a subarctic fell. Suom. hyönt. Aikak 38: 6574.Google Scholar
Ohyama, Y. and Asahina, E.. 1970. [Frost resistance and glycerol in overwintering adult wasp Chasmias sp.] [Jap., English summary]. Low Temp. Sci. Ser. B Biol. Sci. 28: 7985.Google Scholar
Ohyama, Y. and Asahina, E.. 1972. Frost resistance in adult insects. J. Insect Physiol. 18: 267282.CrossRefGoogle Scholar
Okanove, M. and Sasaki, O.. 1960. [Depth of frozen ground on slopes with no snow cover in winter.] J. Jap. For. Soc. 42(9): 339'342. (In Japanese.)Google Scholar
Oliver, D. R. 1963. Entomological studies in the Lake Hazen area, Ellesmere Island, including lists of species of Arachnida, Collembola and Insecta. Arctic 16: 175180.CrossRefGoogle Scholar
Oliver, D. R. 1968. Adaptations of Arctic Chironomidae. Ann. zool. Fenn. 5: 111118.Google Scholar
Oliver, D. R., Corbet, P. S., and Downes, J. A.. 1964. Studies on arctic insects: the Lake Hazen project. Can. Ent. 96: 138139.CrossRefGoogle Scholar
Pajunen, V. I. and Jansson, A.. 1969. Dispersal of the rock-pool Corixids Arctocorixa carinata (Sahlb.) and Callicorixa producta (Reut). (Hem., Het., Corixidae). Ann. zool. Fenn. 6: 391427.Google Scholar
Pantyukhov, G. A. 1964. [Effect of subzero temperatures on various populations of the brown-tailed moth (Euproctis chrysorrhoea L.) and the Gypsy moth (Lymantria dispar L.) (Lepidoptera; Orgyidae)]. Ent. Obozr. 43: 94111. (In Russian, English summary.) (Translation in Ent. Rev. 43(1): 47–55.)Google Scholar
Park, O. 1930. Studies in the ecology of forest Coleoptera. Seral and seasonal succession of Coleoptera in the Chicago area, with observations on certain phases of hibernation and aggregation. Ann. ent. Soc. Am. 23: 5780.CrossRefGoogle Scholar
Paulson, D. R. and Jenner, C. E.. 1971. Population structure in overwintering larval Odonata in North Carolina in relation to adult flight season. Ecology 52: 96103.CrossRefGoogle Scholar
Payne, N. M. 1927. Freezing and survival of insects at low temperatures. J. Morph. 43: 521546.CrossRefGoogle Scholar
Payne, N. M. 1929. Absolute humidity as a factor in insect cold-hardiness, with a note on the effect of nutrition on cold hardiness. Ann. ent. Soc. Am. 22: 601620.CrossRefGoogle Scholar
Peck, S. B. and Russell, D. R.. 1976. Life history of the fungus gnat Macrocera nobilis in American caves (Diptera: Mycetophilidae). Can. Ent. 108: 12351241.CrossRefGoogle Scholar
Pienkowski, R. L. 1976. Behaviour of the adult alfalfa weevil in diapause. Ann. ent. Soc. Am. 69: 155157.CrossRefGoogle Scholar
Pitts, C. W. and Hopkins, T. L.. 1965. Lipid composition of hibernating face flies. Proc. N. cent. Brch ent. Soc. Am. 20: 7273.Google Scholar
Pouvreau, A. 1970. Données écologiques sur l'hibernation controlée des reines de Bourdons (Hymenoptera, Apoidea, Bombinae, Bombus Latr.). Apidologie 1: 7395. (English and German summary.)CrossRefGoogle Scholar
Powell, W. 1974. Supercooling and the low temperature survival of the green spruce aphid Elatobium abiètinum. Ann. appl. Biol. 78: 2737.CrossRefGoogle ScholarPubMed
Powell, W. 1976. Supercooling temperature distribution curves as possible indicators of aphid food quality. J. Insect Physiol. 22: 595601.CrossRefGoogle Scholar
Powell, W. and Parry, W. H.. 1976. Effects of temperature on overwintering populations of the green spruce aphid Elatobium abietinum. Ann. appl. Biol. 82: 209219.CrossRefGoogle Scholar
Proctor, N. S. 1976. Mass hibernation site for Nymphalis vau-album (Nymphalidae). J. Lepid. Soc. 30: 126.Google Scholar
Pryor, M. E. 1962. Some environmental features of the Hallett Station, Antarctica, with special reference to soil arthropods. Pacif. Insects 4: 681728.Google Scholar
Raison, J. K. 1973. Temperature-induced phase changes in membrane lipids and their influence on metabolic regulation. Symp. Soc. exp. Biol. 27: 485512.Google ScholarPubMed
Raske, A. G. 1975. Cold-hardiness of first instar larvae of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Can. Ent. 107: 7580.CrossRefGoogle Scholar
Rasnitsyn, A. P. 1964. On hibernation of Ichneumon flies (Hymenoptera Ichneumonidae). Ent. Obozr. 43: 4651. (In Russian, English summary.) (Translation in Ent. Rev. 43(1): 24–26.)Google Scholar
Richards, W. R. 1963. The Aphididae of the Canadian arctic. Can. Ent. 95: 449464.CrossRefGoogle Scholar
Richards, W. R. 1964. The scale insects of the Canadian arctic. Can. Ent. 96: 14571462.CrossRefGoogle Scholar
Riegert, P. W. 1967. Association of subzero temperatures, snow cover and winter mortality of grasshopper eggs in Saskatchewan. Can. Ent. 99: 10001003.CrossRefGoogle Scholar
Ring, R. A. 1972. Relationship between diapause and supercooling in the blowfly Lucilia sericata (Mg) (Diptera: Calliphoridae). Can. J. Zool. 50: 16011605.CrossRefGoogle Scholar
Robinson, W. 1927. Water binding capacity of colloids a definite factor in winter hardiness of insects. J. econ. Ent. 20: 8088.CrossRefGoogle Scholar
Ross, H. H. 1956. The evolution and classification of the mountain caddisflies. Univ. Illinois Press, Urbana.Google Scholar
Ross, H. H. 1965 a. Pleistocene events and insects. pp. 583596, in Wright, H. E. and Fry, D. G. (Eds.), The quaternary of the United States. Princeton U. Press.Google Scholar
Ross, H. H. 1965 b. A textbook of entomology. Wiley, New York. 3rd ed.Google Scholar
Ross, H. H. and Ricker, W. E.. 1971. The classification, evolution and dispersal of the winter stonefly genus Allocapnia. Ill. biol. Monogr. 45. 166 pp.Google Scholar
Rubtzov, I. A. 1965. [Early spring and winter fauna of simuliids.] Zool, Zh. 44: 15841596. (Russian, English summary.)Google Scholar
Salt, R. W. 1953. The influence of food on cold-hardiness of insects. Can. Ent. 85: 261269.CrossRefGoogle Scholar
Salt, R. W. 1955. Extent of ice formation in frozen tissues and a new method for its measurement. Can. J. Zool. 33: 391403.Google Scholar
Salt, R. W. 1956. Freezing and melting points of insect tissues. Can. J. Zool. 34: 15.CrossRefGoogle Scholar
Salt, R. W. 1957. Natural occurrence of glycerol in insects and its relation to their ability to survive freezing. Can. Ent. 89(11): 491494.CrossRefGoogle Scholar
Salt, R. W. 1958 a. Application of nucleation theory to the freezing of supercooled insects. J. Insect Physiol. 2: 178188.CrossRefGoogle Scholar
Salt, R. W. 1958 b. Role of glycerol in producing abnormally low supercooling and freezing points in an insect, Bracon cephi (Gahan). Nature, Lond. 181: 1281.CrossRefGoogle Scholar
Salt, R. W. 1959 a. Survival of frozen fat body cells in an insect. Nature, Lond. 184: 1426.Google Scholar
Salt, R. W. 1959 b. Role of glycerol in the cold hardening of Bracon cephi (Gahan). Can. J. Zool. 37: 5969.Google Scholar
Salt, R. W. 1961. Principles of insect cold-hardiness. A. Rev. Ent. 6: 5574.CrossRefGoogle Scholar
Salt, R. W. 1962. Intracellular freezing in insects. Nature, Lond. 193: 12071208.CrossRefGoogle Scholar
Salt, R. W. 1963. Delayed inoculative freezing of insects. Can. Ent. 95: 11901202.CrossRefGoogle Scholar
Salt, R. W. 1966 a. Factors influencing nucleation in supercooled insects. Can. J. Zool. 44: 117133.CrossRefGoogle Scholar
Salt, R. W. 1966 b. Effect of cooling rate on the freezing temperatures of supercooled insects. Can. J. Zool. 44: 655659.CrossRefGoogle Scholar
Salt, R. W. 1968. Location and quantitative aspects of ice nucleators in insects. Can. J. Zool. 46: 329333.CrossRefGoogle Scholar
Salt, R. W. 1969. The survival of insects at low temperatures. Symp. Soc. exp. Biol. 23: 331350.Google ScholarPubMed
Salt, R. W. 1970. Analysis of insect freezing temperature distributions. Can. J. Zool. 48: 205208.CrossRefGoogle Scholar
Salt, R. W. 1971. Winter survival of the rye jointworm, Hamiolita secale (Hymenoptera, Eurytomidae). Can. Ent. 103: 286287.CrossRefGoogle Scholar
Salt, R. W. and James, H. G.. 1947. Low temperature as a factor in the mortality of eggs of Mantis religiosa L. Can. Ent. 79: 3336.CrossRefGoogle Scholar
Salt, R. W. and Kaku, S.. 1967. Ice nucleation and propagation in spruce needles. Can. J. Bot. 45: 13351346.Google Scholar
Sawchyn, W. W. and Gillott, C.. 1975. The biology of two related species of coenagrionid dragonflies (Odonata: Zygoptera) in Western Canada. Can. Ent. 107: 119128.CrossRefGoogle Scholar
Schaefer, M. 1976 a. An analysis of diapause and resistance in the egg stage of Floronia bucculenta (Araneida, Linyphiidae). A contribution to winter ecology. Oecologia (Berl.) 25: 155175.CrossRefGoogle ScholarPubMed
Schaefer, M. 1976 b. Experimentelle Untersuchungen zum Jahreszyklus und zur Überwinterung von Spinnen (Araneida). Zool. Jb. Abt. Syst. Ökol. Geogr. Tiere 103: 127289.Google Scholar
Schiemenz, H. 1969. Die Zikadenfauna mitteleuropaischer Trockenrasen (Homoptera, Auchenorhyncha). Untersuchungen zu ihrer Phanologie, Ökologie, Bionomie und Chorologie. Ent. Abh. (Dresden) 36: 201280.Google Scholar
Schiemenz, H. 1971. Die Zikadenfauna (Homoptera, Auchenorhyncha) der Erzgebirgshochmoore. Zool. Jb. Abt. Syst. Ökol. Geogr. Tiere 98: 397417.Google Scholar
Schiemenz, H. 1975. Die Zikadenfauna der Hochmoore im Thuringer Wald und im Harz. Faun. Abh. (Dresden) 5: 215233.Google Scholar
Schwartzbach, M. 1961. Palaeoclimate of Europe and North America. Chap. XI, pp. 255291in Nairn, A.E.M. (Ed.), Descriptive paleoclimatology. Interscience.Google Scholar
Schwartzbach, M. 1963. Climates of the past. (Translated by Muir, R. D..) Van Nostrand, New York. 328 pp.Google Scholar
Semtner, P. J. and Hair, J. A.. 1976. The ecology of behaviour of the lone star tick. X. Adult overwintering and survival in woodlots. J. med. Ent. 13: 216219.Google ScholarPubMed
Seppänen, E. J. 1969. Suurperhostemme talvehtimisasteet. [The overwintering of our Macrolepidoptera.] Suom. hyönt. Aikak 35: 129152. (In Finnish.)Google Scholar
Sheldon, J. K. 1975. Survival of spermatozoa in female Chrysopa carnea during diapause. Envir. Ent. 4: 651653.Google Scholar
Simpson, G. G. 1953. The major feature of evolution. Columbia Univ. Press, New York.Google Scholar
Simpson, R. G. and Welborn, C. E.. 1975. Aggregations of alfalfa weevils, Hypera postica, convergent ladybeetles, Hippodamia convergens and other insects. Envir. ent. 4: 193194.Google Scholar
Sleigh, M. A. 1953. Survival of a dehydrated chironomid larva (Diptera) in pure nitrogen. Entomologist 86: 298300.Google Scholar
Slosser, J. A., Phillips, J. R., Herzog, G. A., and Reynolds, C. R.. 1975. Overwinter survival and spring emergence of the bollworm in Arkansas. Envir. ent. 4: 10151024.Google Scholar
Solbreck, C. 1974. Maturation of post-hibernation flight behaviour in the coccinellid Coleomegilla maculata (DeGeer). Oecologia (Berl.) 17: 265275.CrossRefGoogle ScholarPubMed
Somme, L. 1964. Effects of glycerol on cold-hardiness in insects. Can. J. Zool. 42: 87101.Google Scholar
Somme, L. 1965 a. Further observations on glycerol and cold-hardiness in insects. Can. J. Zool. 43: 765770.CrossRefGoogle Scholar
Somme, L. 1965 b. Changes in sorbitol content and supercooling in overwintering eggs of the European red mite Panonychus ulmi (Koch). Can. J. Zool. 43: 881884.Google Scholar
Somme, L. 1967. The effect of temperature and anoxia on haemolymph composition and supercooling in three overwintering insects. J. Insect Physiol. 13: 805814.CrossRefGoogle Scholar
Somme, L. 1969. Mannitol and glycerol in overwintering aphid eggs. Norsk ent. Tidsskr. 16: 107111.Google Scholar
Somme, L. 1974. The overwintering of Pelophila borealis Payk. III. Freezing tolerance. Norsk ent. Tidsskr. 21: 131134.Google Scholar
Somme, L. 1976. Cold hardiness of winter active Collembola. Norw. J. Ent. [Norsk ent. Tidsskr.] 23: 149163.Google Scholar
Sturgess, B. T. and Goulding, R. L.. 1968. Tolerance of three species of larval Chironomidae to physicochemical stress factors occurring in stabilization lagoons. Ann. ent. Soc. Am. 61: 903906.CrossRefGoogle Scholar
Sullivan, C. R. 1965. Laboratory and field investigations on the ability of eggs of the European pine sawfly, Neodiprion sertifer (Geoffroy) to withstand low winter temperatures. Can. Ent. 97: 978993.Google Scholar
Sullivan, C. R., Griffiths, K. J., and Wallace, D. R.. 1977. Low winter temperatures and the potential for establishment of the egg parasite Anastatus disparis (Hymenoptera: Eupelmidae) in Ontario populations of the gypsy moth. Can. Ent. 109: 215220.CrossRefGoogle Scholar
Summers, J. N. 1922. Effect of low temperatures on the hatching of gypsy moth eggs. Bull. U.S. Dep. Agric. 1080. 54 pp.Google Scholar
Swain, W. R. 1975. Cold tolerance in relation to starvation of adult Rhyzopertha dominica (Coleoptera: Bostrichidae). Can. Ent. 107: 10571061.CrossRefGoogle Scholar
Szabo, T. I. 1975. Overwintering of honeybee queens. I. maintenance of honeybee queens in solitary confinement. J. apic. Res. 14: 6974.Google Scholar
Takehara, I. 1966. Natural occurrence of glycerol in the slug caterpillar, Monema flavescens. Contr. Inst. low Temp. Sci. Hokkaido Univ. Ser. B 14. 34 pp.Google Scholar
Takehara, I. and Asahina, E.. 1960. [Frost resistance and glycerol content in overwintering insects.] Low Temp. Sci. Ser. B 18: 5765. (In Japanese.)Google Scholar
Tanno, K. 1962. [Frost resistance in a carpenter ant Camponotus obscuripes obscuripes. 1. The relation of glycerol to frost-resistance.] Low Temp. Sci. Ser. B 20: 2534. (In Japanese.)Google Scholar
Tanno, K. 1964. [High sugar levels in the solitary bee, Ceratina.] Low Temp. Sci. Ser. B 22: 5157. (In Japanese.)Google Scholar
Tanno, K. 1967. Freezing injury to fat body cells of the poplar sawfly. pp. 245257in Asahina, E. (Ed.), Cellular injury and resistance in freezing organisms. Inst. Low Temp. Sci., Sapporo.Google Scholar
Tanno, K. and Asahina, E.. 1964. [Frost resistance in the poplar sawfly, Trichiocampus populi Okamoto.] Low Temp. Sci. Ser. B 22: 5970. (In Japanese.)Google Scholar
Tarunen, S. and Chippendale, G. M.. 1976. Use of fat body and midgut lipids by diapausing larvae of the southwestern cornborer, Diatraea grandiosella. Ann. ent. Soc. Am. 69: 551555.CrossRefGoogle Scholar
Tercafs, R. and Thinès, G.. 1973. Études des déclencheurs visuels intervenant lors de la penetration souterraine de Scoliapteryx libatrix L., et Triphosa dubitata L. (Lépidoptères trogloxènes). Annls Spéléol. 28: 177181.Google Scholar
Theede, H., Schneppenheim, R., and Beress, L.. 1976. Frostschutz-Glycoproteine bei Mytilus edulis? Marine Biol. 36: 183191.Google Scholar
Thienemann, A. 1954. Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. Binnengewässer 20: 1834.Google Scholar
Thomas, C. R. 1960. The European wasp (Vespula germanica Fab.) in New Zealand. N.Z. Dep. Sci. Industr. Res. Inf. Serv. 27. 27 pp.Google Scholar
Topp, W. 1975. Morphologische Variabilitat, Diapause und Entwicklung von Atheta fungi (Grav.) (Col., Staphylinidae). Zool. Jb., Abt. Syst. Ökol. Geogr. Tiere 102: 101127.Google Scholar
Truchan, T. and Butcher, J. W.. 1970. Cold hardiness of Dendrosoter protuberans. J. econ. Ent. 63: 328330.CrossRefGoogle Scholar
Trump, B. F., Young, D. E., Arnold, E. A., and Stowell, R. E.. 1965. Effects of freezing and thawing on the structure, chemical constitution and function of cytoplasmic structures. Fedn Proc. Fedn Am. Socs exp. Biol. 23: Suppl. 15, S144–S168.Google Scholar
Ulfstrand, S. 1968. Life cycles of benthic insects in Lapland streams (Ephemeroptera, Plecoptera, Trichoptera, Diptera Simuliidae). Oikos 19: 167190.Google Scholar
Usinger, R. L. (Ed.). 1956. Aquatic insects of California. Univ. California Press.Google Scholar
Utida, S. 1957. [Developmental zero temperature in insects.] Jap. J. appl. Ent. Zool. 1: 4653. (Japanese, English summary.)Google Scholar
Uvarov, B. 1966. Hibernation of active stages of Acridoidea in temperate climates. Atti/Accad. gioenia Sci. nat. 18: 175189.Google Scholar
Valder, S. M., Hopkins, T. L., and Valder, S. A.. 1969. Diapause induction and changes in lipid composition in diapausing and reproducing faceflies, Musca autumnalis. J. Insect Physiol. 15: 11991214.Google Scholar
Vallotton, R. 1969. Contribution à la biologie de la Cécidomyie du pois Contarinia pisi Winn. (Diptera, Cecidomyidae) avec étude particulière du phénomène de la diapause. Mitt. schweiz. ent. Ges. 42: 241293.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary theory 1(1): 130.Google Scholar
Veimer, S. 1972. [Free amino acids in the larva of Blastesthia turionella L.] Eesti NSV Tead. Akad. Toim., Biol. 21(1): 7174. (In Russian.)Google Scholar
Veimer, S. 1974. [The relation between glycerol content and cold-resistance in hibernating larvae of Apanteles glomeratus.] Eesti NSV. Tead. Akad. Toim., Biol. 23: 254257. (In Russian, English summary.)Google Scholar
Veimer, S. and Merivee, E.. 1971. [Cold hardiness and presence of polyhydric alcohols in overwintering eggs of some insects.] Eesti NSV. Tead. Akad. Toim., Biol. 20: 4852. (Russian, English summary.)Google Scholar
Vepsäläinen, K. 1974. The life cycles and wing lengths of Finnish Gerris Fabr. species (Heteroptera, Gerridae). Acta zool. fenn. 141: 173.Google Scholar
Walker, E. M. 1953. The Odonata of Canada and Alaska. Vol. I. General; the Zygoptera — damselflies. Univ. Toronto Press.Google Scholar
Waloff, N. 1975. The parasitoids of the nymphal and adult stages of leafhoppers (Auchenorrhyncha: Homoptera) of acidic grasslands. Trans. R. ent. Soc. Lond. 126: 637686.Google Scholar
Watt, J. C. 1973. Characteristics and relationships of the New Zealand insect fauna. N.Z. Ent. 5: 244246.Google Scholar
Weiser, C. J. 1970. Cold resistance and injury in woody plants. Science, N.Y. 169: 12691278.Google ScholarPubMed
Wellington, W. G. 1950. The effects of radiation on the temperatures of insectan habitats. Scient. Agric. 30: 209234.Google Scholar
Wellington, W. G. 1960. Qualitative changes in natural populations during changes in abundance. Can. J. Zool. 38: 289314.Google Scholar
Wiggins, G. B. 1973. A contribution to the biology of caddisflies (Trichoptera) in temporary pools. R. Ont. Mus. Life Sci. Contrib. 88. 28 pp.Google Scholar
Williams, R. J. 1970. Freezing tolerance in Mytilus edulis. Comp. Biochem. Physiol. 35: 145162.Google Scholar
Wilson, E. O. 1971. The insect societies. Bellknap Press, Cambridge, Mass.Google Scholar
Witter, J. A. and Kulman, H. M.. 1972. Mortality factors affecting eggs of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Can. Ent. 104: 705710.Google Scholar
Witter, J. A., Mattson, W. J., and Kulman, H. M.. 1975. Numerical analysis of a forest tent caterpillar (Lepidoptera: Lasiocampidae) outbreak in northern Minnesota. Can. Ent. 107: 837854.Google Scholar
Wood, F. E. Jr, and Nordin, J. H.. 1976. Studies on the low temperature induced biogenesis of glycerol by adult Protophormia terranovae. J. Insect Physiol. 22: 16651673.CrossRefGoogle Scholar
Woodford, J. A. T. and Lerman, P. M.. 1974. Morphological variation in spring migrants of Myzus persicae (Sulz.) (Hemiptera, Aphididae): comparison of alatae from peach and mangold. Bull. ent. Res. 64: 595604.Google Scholar
Wyatt, G. R. 1967. The biochemistry of sugars and polysaccharides in insects. Adv. Insect Physiol. 4: 287360.Google Scholar
Wyatt, G. R. and Meyer, W. L.. 1959. The chemistry of insect haemolymph. III. Glycerol. J. gen. Physiol. 42: 10051011.Google Scholar
Zachariassen, K. E. 1973. Seasonal variation in hemolymph osmolality and osmotic contribution of glycerol in adult Rhagium inquisitor L. (Col. Cerambycidae). Norsk ent. Tidsskr. 20: 259262.Google Scholar
Zachariassen, K. E. and Hammel, H. T.. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature, Lond. 262: 285287.Google ScholarPubMed
Zachariassen, K. E. and Påsche, A.. 1976. Effect of anaerobiosis on the adult Cerambycid beetle, Rhagium inquisitor L. J. Insect Physiol. 22: 13651368.Google Scholar
Zeuner, F. E. 1959. The pleistocene period, its climate, chronology and faunal successions. Hutchinson, London. 447 pp.Google Scholar
Ziegler, R. and Wyatt, G. R.. 1975. Phosphorylase and glycerol production activated by cold in diapausing silkmoth pupae. Nature, Lond. 254: 622623.CrossRefGoogle ScholarPubMed