Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:43:00.708Z Has data issue: false hasContentIssue false

Modelling factors that affect the presence of larval mosquitoes (Diptera: Culicidae) in stormwater drainage systems to improve the efficacy of control programmes

Published online by Cambridge University Press:  10 September 2013

Michael J. Jackson*
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
Jennifer L. Gow
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
Michelle J. Evelyn
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
T.J. Scott McMahon
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
Harlan Campbell
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
Jennifer Sheppard
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
Tim J. Howay
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
Disa Fladmark
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
Aynsley Thielman
Affiliation:
Culex Environmental Ltd., 4-4075 Kingsway Avenue, Burnaby, British Columbia, Canada V5H 1Y9
*
1Corresponding author (e-mail: [email protected]).

Abstract

Stormwater catch basins form part of artificial drainage systems in urban areas and can provide larval habitat for mosquito vector species of West Nile virus (WNv), such as Culex pipiens Linnaeus (Diptera: Culicidae). We evaluated the impact of management techniques and targeted applications of larvicide on larval populations of this potential WNv mosquito vector species in catch basins from the Lower Mainland of Vancouver and on Vancouver Island of British Columbia, Canada. A mixed effects logistic regression model described the relationship between larval presence and larvicide treatment while controlling for other parameters. Parameter estimates showed that larvicide treatment reduced the odds of larvae presence by a factor of ∼7.23. The model also revealed relationships between larval presence and water temperature and adjacent land use but larvicide treatment consistently reduced the presence of larvae regardless of these other factors. This knowledge can now be used to prioritise and target control efforts to most efficiently reduce WNv mosquito vector populations, and most effectively reduce the risk of WNv transmission to humans. A similar research strategy could be applied to emerging threats from other potential mosquito vectors of disease around the world, to help lower the incidence of mosquito-borne disease.

Résumé

Les réseaux artificiels de drainage dans les zones urbaines comprennent des bassins de captage des eaux pluviales qui peuvent servir d'habitats pour les larves de moustiques vecteurs du virus du Nil occidental (WNv), tels que Culex pipiens Linnaeus (Diptera: Culicidae). Nous évaluons les impacts des techniques d'aménagement et des épandages ciblés de larvicide sur les populations de larves de cette espèce, un moustique vecteur potentiel du WNv, dans des bassins de captage dans les basses terres de la région de Vancouver et sur l’île de Vancouver en Colombie-Britannique, Canada. Un modèle de régression logistique à effets mixtes permet de décrire la relation entre la présence de larves et le traitement au larvicide, tout en tenant compte des autres variables. Les estimations des variables montrent que le traitement au larvicide réduit la probabilité de présence de larves par un facteur de l'ordre de 7,23. Le modèle montre aussi une relation entre la présence de larves, d'une part, et la température de l'eau et l'utilisation des terres adjacentes, d'autre part; cependant, le traitement au larvicide réduit toujours la présence des larves, quels que soient les autres facteurs. Ces informations peuvent servir à établir des priorités et fixer des cibles dans les programmes de lutte pour réduire le plus efficacement possible les populations de moustiques vecteurs du WNv et diminuer ainsi le risque de transmission du WNv aux humains. On pourrait utiliser une stratégie de recherche similaire pour étudier les nouvelles menaces que représentent d'autres moustiques vecteurs potentiels de maladies sur la planète afin de diminuer l'incidence des maladies transmises par les moustiques.

Type
Insect Management
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Kevin Floate

References

Anderson, J.F., Ferrandino, F.J., Dingman, D.W., Main, A.J., Andreadis, T.G., Becnel, J.J. 2011. Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, [corrected] and spinosad. Journal of the American Mosquito Control Association, 27: 4555.CrossRefGoogle ScholarPubMed
Becker, N., Zgomba, M., Petric, D., Beck, M., Ludwig, M. 1995. Role of larval cadavers in recycling processes of Bacillus sphaericus. Journal of the American Mosquito Control Association, 11: 329334.Google ScholarPubMed
Belton, P. 1983. The mosquitoes of British Columbia. British Columbia Provincial Museum Handbook, 41: 1189.Google Scholar
Belton, P. 2006. British Columbia mosquitoes as vectors of West Nile virus [online]. Available from http://www.sfu.ca/~belton/summary.pdf [accessed 12 July 2012].Google Scholar
Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H., et al. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24: 127135.CrossRefGoogle ScholarPubMed
Cox, D.R.Snell, E.J. 1989. The analysis of binary data, 2nd edition. Chapman and Hall, London, United Kingdom.Google Scholar
Edillo, F., Kiszewski, A., Manjourides, J., Pagano, M., Hutchinson, M., Kyle, A., et al. 2009. Effects of latitude and longitude on the population structure of Culex pipiens s.l., vectors of West Nile virus in North America. The American Journal of Tropical Medicine and Hygiene, 81: 842848.CrossRefGoogle ScholarPubMed
Enserink, M. 2008. A mosquito goes global. Science, 320: 864866.CrossRefGoogle ScholarPubMed
Hamer, G.L., Kelly, P.H., Focks, D.A., Goldberg, T.L., Walker, E.D. 2011. Evaluation of a novel emergence trap to study Culex mosquitoes in urban catch basins. Journal of the American Mosquito Control Association, 27: 142147.CrossRefGoogle ScholarPubMed
Harbison, J.E., Metzger, M.E., Allen II, V., Hu, R. 2009a. Evaluation of manhole inserts as structural barriers mosquito entry into below ground stormwater systems using a simulated treatment device. Journal of the American Mosquito Control Association, 25: 356360.CrossRefGoogle Scholar
Harbison, J.E., Metzger, M.E., Hu, R. 2010. Association between Culex quinquefasciatus (Diptera: Culicidae) oviposition and structural features of below ground stormwater treatment devices. Journal of Medical Entomology, 47: 6773.CrossRefGoogle Scholar
Harbison, J.E., Metzger, M.E., Walton, W.E., Hu, R. 2009b. Evaluation of factors for rapid development of Culex quinquefasciatus in below ground stormwater treatment devices. Journal of Vector Ecology, 34: 182190.CrossRefGoogle Scholar
Irish, S.R.Pierce, C.S. 2008. Update on the distribution of Ochlerotatus japonicus in Oregon and Washington. Journal of the American Mosquito Control Association, 24: 110111.CrossRefGoogle ScholarPubMed
Jackson, M.J., Gow, J.G., Evelyn, M.E., Meikleham, N.E., McMahon, T.J.S., Koga, E., et al. 2009. Culex mosquitoes, West Nile virus and the application of innovative management in the design and management of stormwater retention ponds in Canada. Water Quality Research Journal of Canada, 44: 103110.CrossRefGoogle Scholar
Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., et al. 2008. Global trends in emerging infectious diseases. Nature, 451: 990994.CrossRefGoogle ScholarPubMed
Kilpatrick, A.M. 2011. Globalization, land use and the invasion of West Nile virus. Science, 334: 323327.CrossRefGoogle ScholarPubMed
Komar, N.Clark, G.G. 2006. West Nile virus activity in Latin America and the Caribbean. Revista Panamericana de Salud Pública, 19: 112117.CrossRefGoogle ScholarPubMed
Lacey, L.A. 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 23: 133163.CrossRefGoogle ScholarPubMed
Lacey, L.A., Lacey, C.M., Peacock, B., Thiery, I. 1988. Mosquito host range and field activity of Bacillus sphaericus isolate 2297 (serotype 25). Journal of the American Mosquito Control Association, 4: 5156.Google ScholarPubMed
Metzger, M.E. 2004. Managing mosquitoes in stormwater treatment devices. University of California, Davis, Agriculture and Natural Resources Publication, Davis, California, United States of America, 8125: 111.CrossRefGoogle Scholar
Morris, J.A., Lampman, R.L., Ballmes, G., Funes, J., Halvorsen, J., Novak, R.J. 2007. First record of Aedes japonicus japonicus in Illinois: defining its spatial distribution and associated mosquito species. Journal of the American Mosquito Control Association, 23: 243251.CrossRefGoogle ScholarPubMed
Nagelkerke, N.J.D. 1991. A note on a general definition of the coefficient of determination. Biometrika, 78: 691692.CrossRefGoogle Scholar
Nielsen, C.F., Reisen, W.K., Armijos, V., Wheeler, S., Kelley, K., Brown, D. 2007. Impacts of adult mosquito control and climate variation on the West Nile Virus epidemic in Davis, during 2006. Proceedings of the Mosquito and Vector Control Association of California, 75: 125130.Google Scholar
Norris, D.E. 2004. Mosquito-borne diseases as a consequence of land use change. EcoHealth, 1: 1924.CrossRefGoogle Scholar
Reisen, W.K.Brault, R. 2007. West Nile virus in North America: perspectives on epidemiology and intervention. Pest Management Science, 63: 641646.CrossRefGoogle ScholarPubMed
Reiter, P., Fontenille, D., Paupy, C. 2006. Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem? The Lancet Infectious Diseases, 6: 463464.CrossRefGoogle ScholarPubMed
Rey, J.R., O'Meara, G.F., O'Connell, S.M., Cutwa-Francis, M.M. 2006. Factors affecting mosquito production from stormwater drains and catch basins in two Florida cities. Journal of Vector Ecology, 31: 334343.CrossRefGoogle ScholarPubMed
Siegel, J.P.Novak, R.J. 1997. Field trials of Vectolex CG® a Bacillus sphaericus larvicide in Illinois waste tires and catch basins. Journal of the American Mosquito Control Association, 13: 305310.Google Scholar
Siegel, J.P.Novak, R.J. 1999. Duration of activity of the microbial larvicide Vectolex CG® (Bacillus sphaericus) in Illinois catch basins and waste tires. Journal of the American Mosquito Control Association, 15: 366370.Google ScholarPubMed
Spielman, A. 2001. Structure and seasonality of Nearctic Culex pipiens populations. Annals of the New York Academy of Sciences, 957: 220234.CrossRefGoogle Scholar
Stockwell, P.J., Wessell, N., Reed, D.R., Kronenwetter-Koepel, T.A., Reed, K.D., Turchi, T.R., et al. 2006. A field evaluation of four larval mosquito control methods in urban catch basins. Journal of the American Mosquito Control Association, 22: 666671.CrossRefGoogle ScholarPubMed
Su, T. 2008. Evaluation of water-soluble pouches of Bacillus sphaericus applied as pre-hatch treatment against Culex mosquitoes in simulated catch basins. Journal of the American Mosquito Control Association, 24: 5460.CrossRefGoogle Scholar
Su, T., Webb, J.P., Meyer, R.P., Mulla, M.S. 2003. Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California. Journal of Vector Ecology, 28: 7989.Google ScholarPubMed
Thielman, A.C.Hunter, F.F. 2007. Photographic key to the adult female mosquitoes (Diptera: Culicidae) of Canada [online]. Canadian Journal of Arthropod Identification, 4. Available from www.biology.ualberta.ca/bsc/ejournal/th_04/th_04.html [accessed 31 March 2013].Google Scholar
Thomson, A. 2008. Quantitative sampling and determination of prevalence of Culex mosquitoes in catch basins and their association with canopy cover in Manitoba. M.Sc. thesis. University of Manitoba, Manitoba, Canada.Google Scholar
Turell, M.J., Dohm, D.J., Sardelis, M.R., O'Guinn, M.L., Andreadis, T.G., Blow, J.A. 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. Journal of Medical Entomology, 42: 5762.CrossRefGoogle ScholarPubMed
Uspensky, I., Klein, D., Braun, S. 1998. Persistence of Bacillus sphaericus in cadavers of mosquito larvae. Israel Journal of Entomology, 32: 4956.Google Scholar
Vazquez-Prokopec, G.M., Vanden Eng, J.L., Kelly, R., Mead, D.G., Kolhe, P., Howgate, J., et al. 2010. The risk of West Nile virus infection is associated with combined sewer overflow streams in urban Atlanta, Georgia, USA. Environmental Health Perspectives, 118: 13821388.CrossRefGoogle ScholarPubMed
Vinogradova, E.B. 2000. Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Pensoft Publishers, Sofia, Bulgaria.Google Scholar
Wood, D.M., Dang, P.T., Ellis, R. 1979. The mosquitoes of Canada – Diptera: Culicidae. Publication 1686. Agriculture Canada, Hull, Quebec, Canada.Google Scholar