Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T19:05:27.033Z Has data issue: false hasContentIssue false

Leaping behaviour and responses to moisture and sound in larvae of piophilid carrion flies

Published online by Cambridge University Press:  31 May 2012

Russell Bonduriansky*
Affiliation:
Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
*
1 E-mail: [email protected]).

Abstract

Observations suggesting that mature larvae of some carrion flies (Piophilidae) tend to leap off carcasses during rain motivated an investigation of the ontogeny and possible functions of larval leaping behaviour and larval responses to two stimuli associated with rain: moisture and sound. These behaviours were investigated in larvae of Prochyliza xanthostoma Walker (Diptera: Piophilidae) by means of laboratory and field observations and experiments. Mature larvae left their feeding substrates (rotting meat) in response to either moisture or rattling sound. The response to moisture was exhibited also by immature larvae. Once on the carcass surface, however, only mature larvae leaped off and pupated in the surrounding soil. The response to sound and the ability to leap only appeared late in larval development and were lost in the prepupal stage. Because rain may facilitate larval locomotion on carcass surfaces, and leaping appears to represent a more rapid and efficient means of leaving a carcass than creeping, these responses may reduce the metabolic costs and predation risks experienced by mature larvae moving to pupation sites in the soil. Thus, the ability to leap and the responses to moisture and sound may represent “ontogenetic adaptations” associated with a brief stage of larval development.

Résumé

L'observation des larves de certaines mouches de la viande (Piophilidae) a révélé que les larves à maturité ont tendance à sauter en bas des carcasses lorsqu'il pleut, un comportement qui nous a motivés à examiner l'ontogenèse et les avantages possibles du saut ainsi que les réactions des larves à deux stimulus reliés à la pluie, l'humidité et le son. Ces comportements ont été étudiés chez Prochyliza xanthostoma Walker (Diptera : Piophilidae) par simple observation et par des expériences en nature et en laboratoire. Les larves à maturité quittent leur substrat alimentaire (viande en décomposition) en réaction à l'humidité ou à des crépitements. Les larves immatures aussi réagissent à l'humidité. Cependant, une fois à la surface de la carcasse, seules les larves à maturité sautent en bas de la carcasse et font leur pupaison dans le sol environnant. La réaction au son et la capacité de sauter n'apparaissent que vers la fin du développement larvaire et disparaissent durant le stade de pré-pupe. Comme la pluie peut faciliter les déplacements des larves à la surface des carcasses et que le saut semble représenter un moyen plus rapide et plus efficace de quitter la carcasse que la reptation, ces réactions peuvent réduire les coûts métaboliques et les risques de prédation reliés aux déplacements des larves à maturité vers le site de leur pupaison dans le sol. Conséquemment, la capacité de sauter et les réactions à l'humidité et au son sont peut-être, en fin de compte, des « adaptations ontogéniques » associées à un développement larvaire de courte durée.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berrigan, D., Lighton, J.R.B. 1993. Bioenergetic and kinematic consequences of limblessness in larval diptera. Journal of Experimental Biology 179: 245–59Google ScholarPubMed
Berrigan, D., Pepin, D.J. 1995. How maggots move: allometry and kinematics of crawling in larval Diptera. Journal of Insect Physiology 41: 329–37CrossRefGoogle Scholar
Bonduriansky, R. 1995. A new Nearctic species of Protopiophila Duda (Diptera: Piophillidae), with notes on its behaviour and comparison with P. latipes (Meigen). The Canadian Entomologist 127: 859–63CrossRefGoogle Scholar
Bullock, T.H., Horridge, G.A. 1965. Structure and function in the nervous systems of invertebrates. Volume 2. San Francisco: WH Freeman and CoGoogle Scholar
Chapman, R.F. 1998. The insects: structure and function. 4th edition. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Cook, R.M. 1973. Physiological factors in the courtship processing of Drosophila melanogaster. Journal of Insect Physiology 19: 397406CrossRefGoogle ScholarPubMed
Costa, P.R.P., Gurvitz, R., Müller, G., Ribeiro, P.B. 1986. Ciclo vital da Piophila casei (Diptera: Piophilidae). Arquivos Brasileiros de Medicina Veterinaria e Zootecnica 38: 191–6Google Scholar
Darwin, C.R. 1868. The variation of animals and plants under domestication. Volume 2. London: John MurrayGoogle Scholar
Dufour, L. 1844. Des métamorphoses et de l'anatomie du Piophila petasionis. Annales des Sciences Naturelles Zoologie et Biologie Animale 3(1): 365–88Google Scholar
Ford, S.C., Napolitano, L.M., McRobert, S.P., Tompkins, L. 1989. Development of behavioral competence in young Drosophila melanogaster adults. Journal of Insect Behavior 2: 575–88CrossRefGoogle Scholar
Freidberg, A. 1981. Taxonomy, natural history and immature stages of the bone-skipper, Centrophlebomyia furcata (Fabricius) (Diptera: Piophillidae, Thyreophorina). Entomologica Scandinavica 12: 320–6CrossRefGoogle Scholar
Hegazi, E.M., El-Gayar, F.H., Rawash, I.A., Ali, S.A. 1978. Factors affecting the bionomics of Piophila casei (L.). Zeitschrift fuer Angewandte Entomologie 85: 327–35CrossRefGoogle Scholar
Hoffman, C.M., Flory, G.S., Alberts, J.R. 1999. Ontogenetic adaptation and learning: a developmental constraint in learning for a thermal reinforcer. Developmental Psychobiology 34: 73863.0.CO;2-B>CrossRefGoogle ScholarPubMed
Hölldobler, B., Wilson, E.O. 1995. Journey to the ants. Cambridge, Massachusetts: Belknap PressGoogle Scholar
Maitland, D.P. 1992. Locomotion by jumping in the Mediterranean fruit-fly larva Ceratitis capitata. Nature (London) 355: 159–61CrossRefGoogle Scholar
Manning, A. 1967. The control of sexual receptivity in female Drosophila. Animal Behaviour 15: 239–50CrossRefGoogle ScholarPubMed
McAlpine, J.F. 1977. A revised classification of the Piophilidae, including ‘Neottiophilidae’ and ‘Thyreophoridae’ (Diptera: Schizophora). Memoirs of the Entomological Society of Canada 103: 166CrossRefGoogle Scholar
McAlpine, J.F. (Editor). 1989. Manual of Nearctic Diptera. Volume 3. Agriculture Canada Monograph 32Google Scholar
Mote, D.C., 1914. The cheese skipper (Piophila casei Linné.): an account of the bionomics and the structure of dipterous larvae occuring in human foods with particular reference to those which have been recorded as accidental parasites of man. Ohio Naturalist 14: 309–15Google Scholar
Oldroyd, H. 1964. The natural history of flies. London: Weidenfeld and NicolsonGoogle Scholar
Oppenheim, R.W. 1980. Metamorphosis and adaptation in the behavior of developing organisms. Developmental Psychobiology 13: 353–6CrossRefGoogle ScholarPubMed
Oppenheim, R.W. 1981. Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behaviour: a neuroembryological perspective. pp 73109in Connoly, K.J., Prechtl, H.F.R. (Eds), Maturation and development: biological and psychological perspectives. London: Heinemann Medical BooksGoogle Scholar
Redi, F. 1688. Esperienze intorno alla generazione degl'insetti. Firenze, Italy: C DatiGoogle Scholar
[Translated by Bigelow, M.. 1909. Experiments on the generation of insects. Chicago: Open Court Publishing Co]Google Scholar
Rossi, E., Presciuttini, S. 1996. Development of insecticide resistance in Piophila casei (Diptera: Piophilidae) strains selected with low doses of Deltamethrin. Journal of Economic Entomology 89: 1520CrossRefGoogle ScholarPubMed
Sakai, M., Katayama, T., Taoda, Y. 1990. Postembryonic development of mating behavior in the male cricket Gryllus bimaculatus DeGeer. Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 166: 775–84Google Scholar
Schmidt-Nielsen, K. 1993. Animal Physiology: adaptation and environment. 4th edition. Cambridge: Cambridge University PressGoogle Scholar
Schwalm, F.E. 1988. Insect morphogenesis. Monographs in Developmental Biology 20Google Scholar
Swammerdam, J. 1669. Historia insectorum generalis. Utrecht, the Netherlands: M van DrennenGoogle Scholar
[Translated by Flloyd, T.. 1758. The book of nature, or, the history of insects. London: CG Seyffert]Google Scholar
Trabalon, M., Campan, M. 1984. Etude de la receptivite sexuelle de la femelle de Calliphora vomitoria (Dipteres, Calliphoridae) au cours du premier cycle gonadotrope. I: approches comportementale et physiologique. Behaviour 90: 241–58CrossRefGoogle Scholar
Wille, J. 1922. Biologische und Physiologische Beobachtungen und Versuche an der Käsefliegenlarve (Piophila casei L.). Zoologische Jahrbuecher Abteilung fuer Allegemeine Zoologie und Physiologie de Tiere 39: 301–20Google Scholar
Williston, S.W. 1908. Manual of North American Diptera. New Haven, Connecticut: James T HathawayGoogle Scholar
Zar, J.H. 1996. Biostatistical analysis. 3rd edition. Upper Saddle River, New Jersey: Prentice Hall IncGoogle Scholar