Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T07:21:45.693Z Has data issue: false hasContentIssue false

A LABORATORY TECHNIQUE TO STUDY A CHANGE IN FEEDING BEHAVIOR BETWEEN SMALL AND LARGE LARVAE OF GYPSY MOTH, LYMANTRIA DISPAR (L.)

Published online by Cambridge University Press:  31 May 2012

D.B. Roden
Affiliation:
Forestry Canada, Ontario Region, Sault Ste. Marie, Ontario, Canada P6A 5M7
J.C. Kimball
Affiliation:
Forestry Canada, Ontario Region, Sault Ste. Marie, Ontario, Canada P6A 5M7
G.A. Simmons
Affiliation:
Department of Entomology, Michigan State University, East Lansing, Michigan, USA 48824

Abstract

A change in the feeding behavior between small and large larvae of gypsy moth, Lymantria dispar (L.), is an important part of the insect’s biology. This paper describes how to build a lighting system with incandescent and fluorescent light in the laboratory to induce a change in feeding behavior similar to the change that occurs in the field. The change in feeding behavior was observed on artificial “tree stems” constructed from 5-cm ABS plastic pipe and fitted with felt and cardboard “bark flaps”. On the day before pupation began, 85% of the population migrated down the artificial tree stems to seek shelter under the bark flaps; only fourth-, fifth-, and sixth-instar larvae were observed exhibiting this behavior.

Résumé

Un élément important du cycle vital de la spongieuse (Lymantria dispar [L.]) est la modification du comportement alimentaire observable chez les larves jeunes et âgées. Le présent article décrit la façon d’aménager un système d’éclairage incandescent et fluorescent utilisable en laboratoire pour provoquer un changement de comportement alimentaire similaire à celui survenant sur le terrain. Des “troncs d’arbres” artificiels faits de tuyaux en plastique à base d’ABS de 5 cm de diamètre et recouverts de feutre et de carton en guise de “plaques d’écorce” ont été utilisés pour observer la modification du comportement alimentaire. Au cours de la journée précédant le début de la chrysalidation, 85% de la population est descendue le long des troncs d’arbres artificiels pour s’abriter sous les plaques d’écorce; seuls les 4, 5 et 6 stades larvaires modifiaient ainsi leur comportement.

[Traduit par l’auteur]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbosa, P. 1978. Host plant exploitation by the gypsy moth, Lymantria dispar. Entomologia exp. appl. 24: 2837.CrossRefGoogle Scholar
Barbosa, P., and Capinera, J.L.. 1977. The influence of food on developmental characteristics of the gypsy moth, Lymantria dispar (L.). Can. J. Zool. 55: 14241429.CrossRefGoogle Scholar
Barbosa, P., Greenblatt, J.A., Withers, W., Cranshaw, W., and Harrington, E.A.. 1979. Host plant preferences and their induction in larvae of the gypsy moth, Lymantria dispar. Entomologia exp. appl. 26: 180188.CrossRefGoogle Scholar
Bell, R.A., Owens, C.D., Shapiro, M., and Tardif, J.R.. 1981. Mass rearing and virus production. In The Gypsy Moth: Research Towards Integrated Pest Management. USDA For. Serv., Tech. Bull. 1584.Google Scholar
Brill, T.B. 1980. Light. Plenum Press, New York. 287 pp.Google Scholar
Campbell, R.W. 1981. Population dynamics. In The Gypsy Moth: Research Towards Integrated Pest Management. USDA For. Serv., Tech. Bull. 1584.Google Scholar
Campbell, R.W., Hubbard, D.L., and Sloan, R.J.. 1975. Patterns of gypsy moth occurrence within a sparse and numerically stable population. Environ. Ent. 4: 535542.CrossRefGoogle Scholar
Chapman, R.E. 1982. The Insects, Structure and Function, 3rd ed. Harvard University Press, Cambridge, MA. 919 pp.Google Scholar
Forbush, E.H., and Fernald, C.H.. 1896. The Gypsy Moth. Wright and Potter Printing Co., State Printers, Boston. 495 pp.Google Scholar
Harris, M.O., and Miller, J.R.. 1983. Color stimuli and oviposition behavior of the onion fly. Physiol. Ent. 9: 145155.CrossRefGoogle Scholar
Hough, J.A., and Pimentel, D.. 1978. Influences of host foliage on development, survival and fecundity of the gypsy moth. Environ. Ent. 7: 97102.CrossRefGoogle Scholar
Lance, D.R., Elkinton, J.S., and Schwalbe, C.P.. 1986. Two techniques for monitoring feeding of large larval lepidoptera, with notes on feeding rhythms of late-instar gypsy moths (Lepidoptera: Lymantriidae). Ann. ent. Soc. Am. 79: 390394.CrossRefGoogle Scholar
Leonard, D.E. 1970. Feeding rhythm in larvae of the gypsy moth. J. econ. Ent. 63: 14541457.CrossRefGoogle Scholar
Leonard, D.E. 1974. Recent developments in ecology and control of the gypsy moth. A. Rev. Ent. 19: 197229.CrossRefGoogle Scholar
Leonard, D.E. 1981. Bioecology of the gypsy moth. In The Gypsy Moth: Research Towards Integrated Pest Management. USDA For. Serv., Tech. Bull. 1584.Google Scholar
Liebhold, M.H., Elkinton, J.S., and Wallner, W.E.. 1986. Effect of burlap bands on between-tree movement of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Ent. 15: 373379.CrossRefGoogle Scholar
Mason, C.J., and McManus, M.L.. 1981. Larval dispersal of the gypsy moth. In The Gypsy Moth: Research Towards Integrated Pest Management. USDA For. Serv., Tech. Bull. 1584.Google Scholar
McManus, M.L. 1973. The role of behavior in the dispersal of newly hatched gypsy moth larvae. USDA For. Serv., Res. Pap. Ne-267.Google Scholar
Moericke, V., Prokopy, R.J., Berlocher, S., and Bush, G.L.. 1975. Visual stimuli eliciting attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to trees. Entomologia exp. appl. 18: 497507.CrossRefGoogle Scholar
Moon, P. 1961. The Scientific Basis of Illuminating Engineering. Dover, New York.Google Scholar
Prokopy, R.J. 1977. Attraction of Rhagoletis pomonella flies (Diptera: Tephritidae) to red spheres of different sizes. Can. Ent. 65: 14441447.Google Scholar
Riordan, C.J., Myers, D.R., and Hulstrom, R.L.. 1989. Spectral Solar Data Base Documentation. Solar Energy Research Institute. Rep. Tr-215-3513B. Golden, CO.Google Scholar
Shapiro, M. 1977. Gypsy moth mass rearing. Evolution of methods for surface sterilization of eggs and/or pupae laboratory report (October 1976 – March 1977). USDA Anim. Plant Health Insp. Serv., Otis AFB, MA.Google Scholar
Weseloh, R.M. 1989. Behavioral responses of gypsy moth (Lepidoptera: Lymantriidae) larvae to abiotic environmental factors. Environ. Ent. 18: 361367.CrossRefGoogle Scholar
Wigglesworth, V.B. 1974. The Principles of Insect Physiology, 7th ed. Wiley, New York.CrossRefGoogle Scholar