Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T18:26:58.080Z Has data issue: false hasContentIssue false

INVITATION PAPER (C.P. ALEXANDER FUND): CLASSICAL BIOCONTROL OF WEEDS: ITS DEFINITION, SELECTION OF EFFECTIVE AGENTS, AND ADMINISTRATIVE–POLITICAL PROBLEMS

Published online by Cambridge University Press:  31 May 2012

Peter Harris
Affiliation:
Agriculture Canada Research Station, PO Box 440, Regina, Saskatchewan, Canada S4P 3A2

Abstract

Dilemmas in weed biocontrol are wide ranging. Even the term biological control is confusing as meanings may be restricted to the use of parasites and predators or extend to the use of all non-chemical means of control. Another problem is that two-thirds of the agents released do not become numerous enough to inflict major damage to the weed population, although this statistic is misleading as it includes agents costing little in pre-release studies where failure is of little consequence and those costing about two scientist years each, or currently about $400,000. Many of the suggestions for improvement are costly and time consuming. Delay is unacceptable where agent release is seen by sponsors as a mark of progress in a program likely to require 20 years and funding is difficult. Analysis of previous biocontrol attempts for attributes of "success" have been disappointing, partly because there are a number of steps involved, each with its own attributes. This paper recognizes four graded "success" steps and discusses many agent selection methods.

There are public demands for a change in emphasis from chemical to biological control; but in the absence of effective enabling legislation, the practice of biocontrol can be legally and politically hazardous; biocontrol should be carried out by a multidisciplinary team but it is usually assigned to a single scientist; it needs to branch in new directions to remain scientifically stimulating, but this increases the risk of failure. Possible solutions for these dilemmas are discussed.

Résumé

Les problèmes reliés au contrôle biologique des mauvaises herbes sont de tous ordres. Le terme même de contrôle biologique peut porter à confusion, puisque, s’il désigne l’utilisation de parasites et de prédateurs, il peut aussi bien s’appliquer à toutes les méthodes non chimiques de contrôle. Un autre problème réside dans le fait que deux tiers des agents libérés dans la nature ne prolifèrent pas assez pour endommager la population de mauvaises herbes; cette statistique n’est cependant pas tout à fait juste, puisqu’elle tient compte à la fois des agents qui occasionnent peu de coûts au cours des essais préalables où l’insuccès a peu de conséquences, et de ceux qui coûtent environ deux années-recherche chacun, soit environ $400,000. Plusieurs des améliorations à apporter aux méthodes sont coûteuses en argent et en temps. Les retards sont inacceptables lorsque l’application d’un agent de contrôle est considérée par les commanditaires comme un signe tangible de progrès au sein d’un programme qui peut demander 20 ans de travail et, de plus, l’obtention de fonds est difficile. L’analyse des tentatives de contrôle biologique pour en reconnaître les facteurs de "succès" s’est révélée un exercice décevant, en partie parce qu’il faut les décomposer en un grand nombre d’étapes, chacune avec ses propres particularités. On reconnaît ici quatre étapes progressives de "succès" et plusieurs méthodes de choix d’un agent de contrôle font l’object d’une discussion.

Le public réclame que l’attention soit davantage tournée vers des contrôles biologiques que vers des contrôles chimiques; cependant, en l’absence d’une législation définie, la pratique du contrôle biologique peut s’avérer dangereuse légalement et politiquement; les contrôles biologiques devraient être régis par des équipes multidisciplinaries, mais sont ordinairement mis entre les mains d’un seul expert; il faudrait que le contrôle biologique s’ouvre sur de nouvelles avenues pour que la rechreche reste stimulante scientifiquement, mais cela augmente les risques d’insuccès. Des solutions à tous ces problèmes sont envisagées.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akcakaya, R.H., and Ginzburg, L.R.. 1989. Niche overlap and the evolution of competitive interactions. pp. 3242in Fontdevila, A. (Ed.), Evolutionary Biology of Transient Unstable Populations. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
Berube, D.E. 1980. Interspecific competition between Urophora affinis and U. quadrifasciata (Diptera: Tephritidae) for ovipositional sites on diffuse knapweed (Centaurea diffusa: Compositae). Zeit. angw. Ent. 90: 299306.CrossRefGoogle Scholar
Burdon, J.J., Groves, R.H., and Cullen, J.M.. 1981. The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J. appl. Ecol. 18: 957966.CrossRefGoogle Scholar
Burge, M.N., Lawton, J.H., and Taylor, J.A.. 1988. The prospects of biological control of bracken in Britain. Aspects appl. Biol. 16: 299309.Google Scholar
Campbell, B.C. 1988. The effects of plant growth regulators and herbicides on host plant quality to insects. pp. 205247in Heinrichs, E.A. (Ed.), Plant Stress–Insect Interactions. J. Wiley and Sons, New York, NY.Google Scholar
Canada. 1985. Pest Control Products Act. R.S., c. P-10, s.1.Google Scholar
Canada. 1990. Plant Protection Act. c. 22. pp. 25.Google Scholar
Carlson, R.B., and Mundal, D.. 1990. Introduction of insects for the biological control of leafy spurge in North Dakota. North Dakota Farm Res. 47: 78.Google Scholar
Cartwright, B., and Kok, L.T.. 1985. Growth responses of musk and plumeless thistles (Carduus nutans and C. acanthoides) to damage by Trichosirocallus horridus (Coleoptera: Curculionidae). Weed Sci. 33: 5762.CrossRefGoogle Scholar
Chucla, M.T., Lamela, M., Gato, A., and Cadavid, I.. 1988. Centaurea corcubionensis: A study of its hypoglycemic activity in rats. Plant Medica 54: 107109.CrossRefGoogle ScholarPubMed
Commonwealth of Australia. 1984. The Biological Control Act 1984. No. 139 of 1984. Commonw. Gov. Print. Cat. 15668/84 8395 5. 25 pp.Google Scholar
Crawley, M.J. 1989 a. Insect herbivores and plant population dynamics. A. Rev. Ent. 34: 531564.CrossRefGoogle Scholar
Crawley, M.J. 1989 b. The successes and failures of weed biocontrol using insects. Biocontr. News and Inform. 10: 213223.Google Scholar
Cromptom, C.W., Stahevitch, A.E., and Woitas, W.A.. 1989. Morphometric studies of the Euphorbia esula group (Euphorbiaceae) in North America. Can. J. Bot. 68: 19781988.CrossRefGoogle Scholar
Cullen, J.M. 1986. Bringing the cost benefit analysis of biological control of Chondrilla juncea up to date. pp. 145152in Delfosse, E.S. (Ed.), Proc. VI Int. Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
Cullen, J.M., and Delfosse, E.S.. 1985. Echium plantagineum: Catalyst for conflict and change in Australia. pp. 249292in Delfosse, E.S. (Ed.), Proc. VI Int. Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
Cullen, J.M., Kable, P.F., and Catt, M.. 1973. Epidemic spread of rust imported for biological control. Nature (London) 244: 462464.CrossRefGoogle Scholar
Delfosse, E.S. 1990. Biological control and the cane toad syndrome. Australian Nat. Hist. 23: 480489.Google Scholar
Dennill, G.B., and Gordon, A.J.. 1990. Climate-related differences in the efficacy of the Australian gall wasp (Hymenoptera: Pteromalidae) released for the control of Acacia longifolia in South Africa. Environ. Ent. 19: 130136.CrossRefGoogle Scholar
Dennill, G.B., and Moran, V.C.. 1989. On insect–plant associations in agriculture and the selection of agents for weed biocontrol. Ann. appl. Biol. 114: 157166.CrossRefGoogle Scholar
Forsyth, S.E. 1984. Stress physiology and biological weed control: A case study with Canada thistle (Cirsium arvense (L.) Scop.). Ph.D. thesis, Department of Plant Science, MacDonald College of McGill University, Ste-Anne-de-Bellevue, Québec, Canada. 330 pp.Google Scholar
Garcia, R., Caltagirone, L.E., and Gutierrez, A.P.. 1988. Comments on a redefinition of biological control. BioScience 38: 692694.CrossRefGoogle Scholar
Goeden, R.D., and Kok, L.T.. 1986. Comments on a proposed “new” approach for selecting agents for the biological control of weeds. Can. Ent. 118: 5158.CrossRefGoogle Scholar
Goeden, R.D., and Louda, S.M.. 1976. Biotic interference with insects imported for weed control. A. Rev. Ent. 21: 325342.CrossRefGoogle Scholar
Goeden, R.D., and Ricker, D.W.. 1985. Seasonal asynchrony of italian thistle, Carduus pycnocephalus, and the weevil, Rhinocyllus conicus (Coleoptera: Curculionidae), introduced for biological control in southern California. Environ. Ent. 14: 433436.CrossRefGoogle Scholar
Grime, J.P. 1974. Vegetation classification by reference to strategies. Nature 250: 2631.CrossRefGoogle Scholar
Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 11691194.CrossRefGoogle Scholar
Grime, J.P. 1979. Plant Strategies and Vegetation Processes. J. Wiley and Sons, Chichester, UK. 222 pp.Google Scholar
Grime, J.P. 1985. Towards a functional description of vegetation. pp. 503514in White, J. (Ed.), The Population Structure of Vegetation. W. Junk, Dordrecht.CrossRefGoogle Scholar
Groppe, K. 1990. Larinus minutus Gyll. (Coleoptera: Curculionidae), a suitable candidate for the biological control of diffuse and spotted knapweed in North America. CAB Int. Inst. Biol. Contr. Rep. 29 pp.Google Scholar
Groppe, K., and Marquardt, K.. 1989 a. Terellia virens (Loew) (Diptera: Tephritidae), a suitable candidate for the biological control of diffuse and spotted knapweed in North America. CAB Int. Inst. Biol. Contr. Rep. 28 pp.Google Scholar
Groppe, K., and Marquardt, K.. 1989 b. Chaetorellia acrolophi White & Marquardt (Diptera: Tephritidae), a suitable candidate for the biological control of diffuse and spotted knapweed in North America. CAB Int. Inst. Biol. Contr. Rep. 29 pp.Google Scholar
Hairston, N.G., Smith, F.E., and Slobdkin, L.B.. 1960. Community structure, population control, and competition. Am. Nat. 94: 421425.CrossRefGoogle Scholar
Harley, K.L.S. 1985. What is biological control. pp. 3236in Ferrar, P., and Stechmann, D.-H. (Eds.), Biological Control in the South Pacific. Min. Agric. Fish. and For., Kingdom of Tonga.Google Scholar
Harris, P. 1973. The selection of effective agents for the biological control of weeds. Can. Ent. 105: 14951503.CrossRefGoogle Scholar
Harris, P. 1979. Cost of biological control of weeds by insects in Canada. Weed Sci. 27: 242250.CrossRefGoogle Scholar
Harris, P. 1980. Effects of Urophora affinis Frfld. and U. quadrifasciata (Meig.) (Diptera: Tephritidae) on Centaurea diffusa Lam. and C. maculosa Lam. (Compositae). Zeit. angw. Ent. 90: 190210.CrossRefGoogle Scholar
Harris, P. 1981. Stress as a strategy in the biological control of weeds. pp. 33340in Papavisa, G.C. (Ed.), Biological Contol in Crop Production. Symp. 5 BARC. Granada.Google Scholar
Harris, P. 1984 a. Euphorbia esula-virgata complex, leafy spurge and E. cyparissias L., Cypress spurge (Euphorbiaceae). pp. 159169in Kelleher, J.S., and Hume, M.A. (Eds.), Biological Control Programmes against Insects and Weeds in Canada 1969–1980. Commonw. Agric. Bur. Farnham Royal, UK.Google Scholar
Harris, P. 1984 b. Carduus nutans L., Nodding Thistle and C. acanthoides L. plumeless thistle (Compositae). pp. 115126in Kelleher, J.S., and Hume, M.A. (Eds.), Biological Control Programmes against Insects and Weeds in Canada 1969–1980. Commonw. Agric. Bur. Farnham Royal, UK.Google Scholar
Harris, P. 1986. Biological control of weeds. In Franz, J.M. (Ed.), Biological Plant and Health Protection. Fortschr. Zool. 32: 123138.Google Scholar
Harris, P. 1988. Environmental impact of weed-control insects. BioScience 38: 542548.CrossRefGoogle Scholar
Harris, P. 1989 a. Feeding strategy, coexistence and impact of insects in spotted knapweed capitula. pp. 3745in Delfosse, E.S. (Ed.), Proc. VII Int. Symp. Biol. Contr. Weeds, 6–11 March 1988, Rome, Italy. 1st Sper. Patol. Veg. (MPAF).Google Scholar
Harris, P. 1989 b. The use of Tephritidae for the biological control of weeds. Biocontr. News Inform. 10: 716.Google Scholar
Harris, P. 1990 a. The Canadian biocontrol of weeds program. pp. 6168in Roche, B.R., and Roche, C.T. (Eds.), Range Weeds Revisited. Washington State University, Pullman, WA.Google Scholar
Harris, P. 1990 b. Environmental impact of introduced biological control agents. pp. 289299in Mackauer, M., Ehler, L., and Roland, J. (Eds.), Critical Issues in Biological Control. Intercept, Andover, UK.Google Scholar
Harris, P., and Wilkinson, A.T.S.. 1984. Cirsium vulgare (Savi) Ten., Bull thistle (Compositae). pp. 147153in Kelleher, J.S., and Hume, M.A. (Eds.), Biological Control Programmes against Insects and Weeds in Canada 1969–1980. Commonw. Agric. Bur. Farnham Royal, UK.Google Scholar
Harris, P., Wilkinson, A.T.S., Thompson, L.S., and Neary, M.. 1978. Interaction between the cinnabar moth, Tyria jacobaeae L. (Lep.: Arctiidae) and ragwort, Senecio jacobaeae L. (Compositae) in Canada. pp. 174180in Freeman, T.E. (Eds.), Proc. IV Int. Symp. Biol. Contr. Weeds. University of Florida, Gainsville, FL.Google Scholar
Harris, P., and Zwölfer, H.. 1968. Screening of phytophagous insects for biological control of weeds. Can. Ent. 100: 295303.CrossRefGoogle Scholar
Hokkanen, H., and Pimentel, D.. 1984. New approach for selecting biological control agents. Can. Ent. 116: 11091121.CrossRefGoogle Scholar
Huffaker, C.B. 1953. Quantitative studies on the biological control of St. John's-wort (Klamath weed) in California. Seventh Pac. Sci. Cong. Proc. 3: 1214. Royal Soc. Wellington, New Zealand.Google Scholar
Ishii, S., and Hirano, C.. 1963. Growth responses of larvae of the rice stem borer to rice plants treated with 2,4-D. Entomologia exp. appl. 6: 257262.CrossRefGoogle Scholar
Johnson, H.B. 1985. Consequences of species introduction and removals on ecosystem function — implications for applied ecology. pp. 2756in Delfosse, E.S. (Ed.), Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
Johnston, T.H., and Tryon, H.. 1914. Queensland: Report of the prickly-pear travelling commission, 1 November 1912 – 30 April 1914. Govt. Printer, Brisbane, Australia. 131 pp.Google Scholar
Julien, M.H. 1982. Biological Control of Weeds: A World Catalogue of Agents and their Target Weeds. Commonw. Inst. Biol. Contr. Commonw. Agric. Bur. 108 pp.Google Scholar
Julien, M.H. 1987. Biological Control of Weeds: A World Catalogue of Agents and their Target Weeds, 2nd ed. CAB International, Wallingford, UK. 150 pp.Google Scholar
Julien, M.H. 1989. Biological control of weeds worldwide: Trends, rates of success and the future. Biocontrol News Inform. 10: 299306.Google Scholar
Julien, M.H., Kerr, J.D., and Chan, R.R.. 1984. Biological control of weeds: An evaluation. Protection Ecol. 7: 325.Google Scholar
Keddy, P.A. 1989. Competition. Chapman and Hall, London, UK. 202 pp.CrossRefGoogle Scholar
Kerin, J. 1984. The Biological Control Bill 1984. Second reading speech. The Parliament of the Commonwealth of Australia. House of Representatives. 9 pp.Google Scholar
Klinkhamer, P.G.L., and de Jong, T.J.. 1988. The importance of small-scale disturbance for seedling establishment in Cirsium vulgare and Cynoglossum, officinale. J. Ecol. 76: 383392.CrossRefGoogle Scholar
Kok, L.T., McAvoy, T.J., and Mays, W.T.. 1986. Impact of tall fescue grass and Carduus thistle weevils on the growth and development of musk thistle, (Carduus nutans). Weed Sci. 34: 966971.CrossRefGoogle Scholar
Kok, L.T., and Pienkowski, R.L.. 1985. Biological control of musk thistle by Rhinocyllus conicus (Coleoptera: Curculionidae) in Virginia from 1969 to 1980. pp. 433438in Delfosse, E.S. (Ed.), Proc. VI Int. Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
Kovalev, O.V., and Vechernin, V.V.. 1986. Description of a new wave process in populations with reference to introduction and spread of the leaf beetle Zygogramma suturalis F. (Coleoptera, Chrysomelidae). Ent. Rev. 65: 93112.Google Scholar
Lawton, J.H. 1988. Biological control of bracken in Britain: Constraints and opportunities. Phil. Trans. R. Soc. Lond. B 318: 335355.Google Scholar
Lawton, J.H., and Strong, D.R.. 1981. Community patterns and competition in folivorous insects. Am. Nat. 118: 317338.CrossRefGoogle Scholar
Loos, M.A. 1975. Phenoxyalkanoic acids. pp. 1127in Kearney, P.C., and Kaufman, D.D. (Eds.), Herbicides, Chemistry, Degradation, and Mode of Action, 2nd ed. Marcel Dekker Inc., New York, NY.Google Scholar
MacArthur, R.H. 1972. Geographical Ecology — Patterns in the Distribution of Species. Harper and Row, New York, NY. 269 pp.Google Scholar
Maxwell, R.C., and Harwood, R.F.. 1960. Increased reproduction of pea aphids on broad beans treated with 2,4-D. Ann. ent. Soc. Am. 53: 199205.CrossRefGoogle Scholar
McEvoy, P.B., Cox, C.S., James, R.R., and Rudd, N.T.. 1989. Ecological mechanisms underlying successful biological weed control: Field experiments with ragwort Senecio jacobaea. pp. 5354in Delfosse, E.S. (Ed.), Proc. VII Int. Symp. Biol. Contr. Weeds, 6–11 March 1988, Rome, Italy. 1st. Sper. Patol. Veg. (MPAF).Google Scholar
Meijden, E. van der, Wijn, M., and Verkaar, H.J.. 1988. Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51: 355363.CrossRefGoogle Scholar
Moran, V.C., and Zimmermann, H.G.. 1984. The biological control of cactus weeds: Achievements and prospects. Biocontr. News Inform. 5: 297320.Google Scholar
Mortensen, K., Harris, P., and Kim, W.K.. 1991. Host ranges of Puccinia jaceae, P. centaurea, P. acroptili, and P. carthami, and the potential value of P. jaceae as a biological control agent for diffuse knapweed (Centaurea diffusa) in North America. Can. J. Pathol. In press.Google Scholar
Müller, H. 1989 a. Structural analysis of the phytophagous insect guilds associated with the roots of Centaurea maculosa Lam., C. diffusa Lam., and C. vallesiaca Jordan in Europe. Oecologia 78: 4152.CrossRefGoogle Scholar
Müller, H. 1989 b. Growth pattern of diploid and tetraploid spotted knapweed Centaurea maculosa Lam. (Compositae), and effects of the root-mining moth Agapeta zoegana (L.) (Lep.: Cochylidae). Weed Res. 29: 103111.CrossRefGoogle Scholar
Müller, H., Schroeder, D., and Gassmann, A.. 1988. Agapeta zoegana (L.) (Lepidoptera: Cochylidae), a suitable prospect for biological control of spotted and diffuse knapweed, Centaurea maculosa Monnet De La Marck and Centaurea diffusa Monnet De La Marck (Compositae) in North America. Can. Ent. 120: 109124.CrossRefGoogle Scholar
Müller, H., Stinson, C.S.A., Marquardt, K., and Schroeder, D.. 1989. The entomofaunas of roots of Centaurea maculosa Lam., C. diffusa Lam., and C. vallesiaca in Europe. Niche separation in space and time. J. appl. Ent. 107: 8398.CrossRefGoogle Scholar
Myers, J.H. 1985. How many insect species are necessary for successful biocontrol of weeds? pp. 7782in Delfosse, E.S. (Ed.), Proc. VI Int. Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
Myers, J.H., and Harris, P.. 1980. Distribution of Urophora galls in flower heads of diffuse and spotted knapweed in British Columbia. J. appl. Ecol. 17: 359367.CrossRefGoogle Scholar
Myers, J.H., Higgins, C., and Kovacs, E.. 1989 a. How many insect species are necessary for the biological control of insects. Environ. Ent. 18: 541547.CrossRefGoogle Scholar
Myers, J.H., Risley, C., and Eng, R.. 1989 b. The ability of plants to compensate for insect attack: Why biological control of weeds with insects is so difficult. pp. 6571in Delfosse, E.S. (Ed.), Proc. VII Int. Symp. Biol. Contr. Weeds, 6–11 March 1988, Rome, Italy. 1st Sper. Patol. Veg. (MPAF).Google Scholar
Neish, G. 1988. Canada, Parliament. Standing Committee on Environment and Forestry. Minutes of proceedings, issue 28, April 28, 1988. 24 pp.Google Scholar
Perkins, R.C.L., and Swezey, O.H.. 1924. The introduction into Hawaii of insects that attack Lantana. Bull. Exp. Sta. Hawaiian Sugar Planters Assoc. 83 pp.Google Scholar
Person, C., Groth, J.V., and Mylyk, O.M.. 1976. Genetic change in host-parasite populations. A. Rev. Phytopath. 14: 177188.CrossRefGoogle Scholar
Peschken, D.P. 1977. Biological control of creeping thistle (Cirsium arvense): Analysis of the releases of Altica carduorum (Col: Chrysomelidae) in Canada. Entomophaga 22: 425428.CrossRefGoogle Scholar
Peschken, D.P., Finnamore, D.B., and Watson, A.K.. 1982. Biocontrol of the weed Canada thistle (Cirsium arvense): Release and development of the gall fly Urophora cardui (Diptera: Tephritidae) in Canada. Can. Ent. 114: 349357.CrossRefGoogle Scholar
Peschken, D.P., Riesen, H.A., Tonks, N.V., and Banham, F.L.. 1970. Releases of Altica carduorum (Chrysomelidae: Coleoptera) against the weed Canada thistle (Cirsium arvense) in Canada. Can. Ent. 102: 264271.CrossRefGoogle Scholar
Peters, T. 1987. Thriving on Chaos. Harper and Row, New York, NY. 708 pp.Google Scholar
Pimentel, D. 1961. Animal population regulation by the genetic feed-back mechanism. Am. Nat. 45: 6579.CrossRefGoogle Scholar
Powell, R.D. 1990. The role of spatial pattern in the population biology of Centaurea diffusa. J. Ecol. 78: 374388.CrossRefGoogle Scholar
Powell, R.D., and Myers, J.H.. 1988. The effect of Sphenoptera jugoslavica Obenb. (Col., Bupresitidae) on its host plant Centaurea diffusa Lam. Compositae. J. appl. Ent. 106: 2545.CrossRefGoogle Scholar
Prins, H.A., and Nell, H.W.. 1989. Size-dependent root herbivory on Cynoglossum officinale. pp. 105112in Prins, A.H. (Ed.), Herbivory and Plant Performance of Senecio jacobaea L. and Cynoglossum officinale L. Meijendel Comite, New Series No. 112. Leiden.Google Scholar
Ramsay, M.J. 1973. Beneficial insect or plant pest? The regulatory agency's dilemma. pp. 4045in Dunn, P.H. (Ed.), Proc. II Int. Symp. Biol. Contr. Weeds, 4–7 October 1971, Rome, Italy. Misc. Publ. No. 6, C.I.B.C., Farnham Royal, UK.Google Scholar
Room, P.M., and Thomas, P.A.. 1985. Nitrogen and establishment of a beetle for biological control of the floating weed salvinia in Papua New Guinea. J. appl. Ecol. 22: 139156.CrossRefGoogle Scholar
Rowe, D.J., and Kok, L.T.. 1984. Potential of Rhinocyllus conicus to adapt to the plumeless thistle, Carduus acanthoides, in Virginia. Virginia J. Sci. 35: 192196.Google Scholar
Roze, L.D. 1974. The biological control of Centaurea diffusa Lam. and C. maculosa Lam. by Urophora affinis Frauenfeld and U. quadrifasciata Meigen (Diptera: Tephritidae). Ph.D. thesis, University of British Columbia, Vancouver, B.C. 208 pp.Google Scholar
Schoener, T.W. 1986. Field experiments on interspecific competition. Am. Nat. 122: 240285.CrossRefGoogle Scholar
Schroeder, D. 1985. The search for effective biocontrol agents in Europe. 1. Diffuse and spotted knapweed. pp. 103109in Delfosse, E.S. (Ed.), Proc. VI. Int. Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
Smith, H.S. 1919. On some phases of insect control by the biological method. J. econ. Ent. 34: 113.CrossRefGoogle Scholar
Southwood, T.R.E. 1961. The number of species of insects associated with various trees. J. Anim. Ecol. 30: 18.CrossRefGoogle Scholar
Stinson, C.S.A. 1987. Investigations on Cyphocleonus achates (Fahr.) (Col.: Curculionidae), a possible biological agent of spotted knapweed (Centaurea maculosa Lam.) and diffuse knapweed (C. diffusa Lam.) (Compositae) in North America. CAB Int. Inst. Biol. Contr. Rep. 37 pp.Google Scholar
Story, J.M., Boggs, K.W., and Good, W.R.. 1988. Optimal timing of 2,4-D applications for compatibility with Urophora affinis and U. quadrifasciata (Diptera: Tephritidae) for control of spotted knapweed. Environ. Ent. 17: 911914.CrossRefGoogle Scholar
Story, J.M., Boggs, K.W., Good, W.R., Harris, P., and Nowierski, R.M.. 1991. Metzneria paucipunctella Zeller (Lepidioptera: Gelechiidae), a moth introduced against spotted knapweed: Its feeding strategy and impact on two introduced Urophora spp. (Diptera: Tephritidae). Can. Ent. 123. In Press.CrossRefGoogle Scholar
Surles, W.W. 1974. Native hymenopteran parasitoids attacking an introduced weevil, Rhinocyllus conicus in Virginia. Environ. Ent. 3: 10271028.CrossRefGoogle Scholar
Varley, G.C. 1947. The natural control of population balance in the knapweed gall-fly (Urophora jaceana). J. Anim. Ecol. 16: 139187.CrossRefGoogle Scholar
Waage, J.K. 1990. Ecological theory and the selection of biological control agents. pp. 135154in Mackauer, M., Ehler, L.E., and Roland, J. (Eds.), Critical Issues in Biological Control. Intercept, Andover, UK.Google Scholar
Wapshere, A.J. 1970. The assessment of biological control potential of the organism attacking Chondrilla juncea L. pp. 8189in Simmonds, F.J. (Ed.), Proc. 1st. Int. Symp. Biol. Contr. Weeds. Misc. Publ. 1 Commonw. Inst. Biol. Contr.Google Scholar
Wapshere, A.J. 1974. A strategy for evaluating the safety of organisms for biological weed control. Ann. appl. Biol. 77: 201211.CrossRefGoogle Scholar
Wapshere, A.J., Caresche, L., and Hasan, S.. 1976. The ecology of Chondrilla in the eastern Mediterranean. J. appl. Ecol. 13: 545553.CrossRefGoogle Scholar
Wapshere, A.J., Delfosse, E.S., and Cullen, J.M.. 1989. Recent developments in biological control of weeds. Crop Protection 8: 227250.CrossRefGoogle Scholar
Waring, G.L. 1986. Galls in harsh environments. Proc. ent. Soc. Wash. 88: 376380.Google Scholar
Waring, G.L., and Price, P.W.. 1990. Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol. Ent. 15: 8789.CrossRefGoogle Scholar
Watson, A.K., and Renney, A.J.. 1974. The biology of Canadian weeds 6. Centaurea diffusa and C. maculosa. Can. J. Plant Sci. 54: 681701.CrossRefGoogle Scholar
White, I.M. 1989. A new species of Terellia Robineau-Desvoidy associated with Centaurea solstitialis L. and a revision of the Terellia virens (Loew) species group (Diptera: Tephritidae). Ent. Mon. Mag. 125: 5362.Google Scholar
Wort, D.J. 1964. Effects of herbicides on plant composition and metabolism. pp. 327334in Ardus, L.J. (Eds.), The Physiology and Biochemistry of Herbicides. Academic Press, New York, NY.Google Scholar
Zwölfer, H. 1965. Preliminary list of phytophagous insects attacking wild Cynareae (Compositae) species in Europe. Commonw. Inst. Biol. Contr. Tech. Bull. 6: 81154.Google Scholar
Zwölfer, H. 1973. Competitive co-existence of phytophagous insects in the flower heads of Carduus nutans. pp. 7481in Dunn, P.H. (Ed.), Proc. II Int. Symp. Biol. Contr. Weeds, 4–7 October 1971, Rome, Italy. Misc. Publ. No. 6, C.I.B.C., Farnham Royal, UK.Google Scholar
Zwölfer, H. 1985. Insects and thistle heads: Resource utilization and guild structure. pp. 407416in Delfosse, E.S. (Ed.), Proc. VI Int. Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
Zwölfer, H., and Harris, P.. 1971. Host specificity determination of insects for biological control of weeds. A. Rev. Ent. 16: 159178.CrossRefGoogle Scholar
Zwölfer, H., and Harris, P.. 1984. Biology and host specificity of Rhinocyllus conicus (Froel.) (Col., Curculionidae), a successful agent for biocontrol of the thistle, Carduus nutans L. Zeit. angw. Ent. 97: 3662.CrossRefGoogle Scholar