Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T21:44:16.493Z Has data issue: false hasContentIssue false

Identification of mariner-like elements in Sitodiplosis mosellana (Diptera: Cecidomyiidae)1

Published online by Cambridge University Press:  02 April 2012

O. Mittapalli
Affiliation:
USDA-ARS, Department of Entomology, 901 West State Street, Purdue University, West Lafayette, Indiana 47907, United States of America
R.H. Shukle*
Affiliation:
USDA-ARS, Department of Entomology, 901 West State Street, Purdue University, West Lafayette, Indiana 47907, United States of America
I.L. Wise
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
2 Corresponding author (e-mail: [email protected]).

Abstract

Mariner-like element sequences were recovered from the genome of the orange wheat midge, Sitodiplosis mosellana (Géhin), with degenerate PCR primers designed to conserved regions of mariner transposases. The deduced amino acid sequences of the mariner-like transposases from S. mosellana showed 67% to 78% identity with the peptide sequences of other mariner transposases. A phylogenetic analysis revealed that the mariner-like elements from S. mosellana grouped in the mauritiana subfamily of mariner transposons. Results from Southern blot analysis suggest mariner-like elements are at a moderate copy number in the genome of S. mosellana.

Résumé

Nous avons récupéré des séquences apparentées à l'élément mariner dans le génome de la cécidomyie du blé, Sitodiplosis mosellana (Géhin), à l'aide d'amorces PCR dégénérées élaborées pour les régions conservées des transposases mariner. Les séquences d'acides aminés déduites chez les transposases de type mariner de S. mosellana sont semblables à 67 % – 78 % aux séquences peptiques des autres transposases mariner. Une analyse phylogénétique montre que les éléments de type mariner chez S. mosellana se regroupent dans la sous-famille mauritiana des éléments mariner. Une analyse de buvardage de Southern indique que les éléments de type mariner se retrouvent en un nombre moyen de copies dans le génome de S. mosellana.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Purdue University Agricultural Research Paper 2004-17541.

References

Augé-Gouillou, C., Notareschi-Leroy, H., Abad, P., Periquet, G., and Bigot, Y. 2000. Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases. Molecular and General Genetics, 264: 506513.CrossRefGoogle Scholar
Barker, P.S., and McKenzie, R.I.H. 1996. Possible sources of resistance to the wheat midge in wheat. Canadian Journal of Plant Science, 76: 689695.CrossRefGoogle Scholar
Barry, E.G., Witherspoon, D.J., and Lampe, D.J. 2004. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar 1 amplified from the genome of the earwig, Forficula auriculara. Genetics, 166: 823833.CrossRefGoogle Scholar
Behura, S.K., Nair, S., and Mohan, M. 2001. Polymorphisms flanking the mariner integration sites in the rice gall midge (Orseolia oryzae Wood-Mason) genome are biotype-specific. Genome, 44: 947954.CrossRefGoogle ScholarPubMed
Berzonsky, W.A., Ding, H., Haley, S.D., Harris, M.O., Lamb, R.J., McKenzie, R.I.H., Ohm, H.W., Patterson, F.L., Pearis, F.B., Porter, D.R., Ratcliffe, R.H., and Shanower, T.G. 2003. Breeding wheat for resistance to insects. Plant Breeding Reviews, 22: 221296.Google Scholar
Bryan, G.J., Jacobson, J.W., and Hartl, D.L. 1987. Heritable somatic excision of a Drosophila transposon. Science (Washington, D.C.), 235: 16361638.CrossRefGoogle ScholarPubMed
Capy, P., David, J.R., and Hartl, D.L. 1992. Evolution of the transposable element mariner in the Drosophila melanogaster species group. Genetica, 86: 3746.CrossRefGoogle ScholarPubMed
Cooley, L., Kelley, R., and Sprading, A. 1988. Insertional mutagenesis of the Drosophila genome with single P elements. Science (Washington, D.C.), 239: 11211128.CrossRefGoogle ScholarPubMed
Ding, H., and Ni, H. 1994. Study on the technique for evaluation of resistance of wheat varieties to wheat midge. Journal of Crop Genetic Research, 4: 3436.Google Scholar
Ding, H., Lamb, R.J., and Ames, N. 2000. Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. Journal of Chemical Ecology, 26: 969985.CrossRefGoogle Scholar
Elliott, R.H., and Mann, L.W. 1996. Susceptibility of red spring wheat, Triticum aestivum L. cv. Katepwa, during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 128: 367375.CrossRefGoogle Scholar
Feinberg, A., and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry, 132: 613.CrossRefGoogle ScholarPubMed
Hartl, D.L. 1989. Transposable element mariner in Drosophila species. In Mobile DNA. Edited by Berg, D.E. and Howe, M.M.. American Society of Microbiology, Washington, D.C. pp. 531536.Google Scholar
Hartl, D.L., Lohe, A.R., and Lozovskaya, E.R. 1997 a. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annual Review of Genetics, 31: 337358.CrossRefGoogle Scholar
Hartl, D.L., Lohe, A.R., and Lozovskaya, E.R. 1997 b. Regulation of the transposable element mariner. Genetica, 100: 177184.CrossRefGoogle ScholarPubMed
Jacobson, J.W., Medhora, M.M., and Hartl, D.L. 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proceedings of the National Academy of Sciences of the Unites States of America, 83: 86848688.CrossRefGoogle ScholarPubMed
Lamb, R.J., Wise, I.L., Olfert, O.O., Gavloski, J., and Darker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist, 131: 387397.CrossRefGoogle Scholar
Lamb, R.J., McKenzie, R.H.I., Wise, I.L., Barker, P.S., Smith, M.A.H., and Olfert, O.O. 2000 a. Resistance to Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist, 132: 591605.CrossRefGoogle Scholar
Lamb, R.J., Tucker, J.R., Wise, I.L., and Smith, M.A.H. 2000 b. Trophic interaction between Sitodiplosis mosellana (Diptera: Cecidomyiidae) and spring wheat: implications for yield and seed quality. The Canadian Entomologist, 132: 607625.CrossRefGoogle Scholar
Lampe, D.J., Walden, K.K.O., and Robertson, H.M. 2001. Loss of transposase–DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Molecular Biology and Evolution, 18: 954961.CrossRefGoogle ScholarPubMed
Lidholm, D.A., Gudmundsson, G.H., and Bowman, H.G. 1991. A highly repetitive, mariner -like element in the genome of Hyalophora cercropia. Journal of Biological Chemistry, 266: 1151811521.CrossRefGoogle Scholar
Lidholm, D.A., Lohe, A.R., and Hartl, D.L. 1993. The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics, 134: 859868.CrossRefGoogle ScholarPubMed
Lis, J.T., Simon, J.A., and Sutton, C.A. 1983. New heat shock puffs and β-galactosidase activity resulting from transformation of Drosophila with an hsp70–lacZ hybrid gene. Cell, 35: 403410.CrossRefGoogle ScholarPubMed
Liu, N., Pridgeon, J.W., Wang, H., Liu, Z., and Zhang, L. 2004. Identification of mariner elements from house flies (Musca domestica) and German cockroaches (Blattella germanica). Insect Molecular Biology, 13: 443447.CrossRefGoogle ScholarPubMed
Lohe, A.R., Moriyama, E.V., Lidholm, D., and Hartle, D.L. 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner -like transposable elements. Molecular Biology and Evolution, 12: 6272.CrossRefGoogle ScholarPubMed
Maruyama, K., and Hartl, D.L. 1991. Evolution of the transposable element mariner in Drosophila species. Genetics, 128: 319329.CrossRefGoogle ScholarPubMed
McKenzie, R.I.H., Lamb, R.J., Aung, T., Wise, I.L., Barker, P., and Olfert, O.O. 2002. Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breeding, 121: 383388.CrossRefGoogle Scholar
Medhora, M., Maruyana, K., and Hartl, D.L. 1991. Molecular and functional analysis of the mariner mutator element Mos 1 in Drosophila. Genetics, 128: 311318.CrossRefGoogle Scholar
Robertson, H.M. 1993. The mariner transposable element is widespread in insects. Nature (London), 362: 241245.CrossRefGoogle ScholarPubMed
Robertson, H.M., and Asplund, M.L. 1996. Bmmar 1 : a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochemistry and Molecular Biology, 26: 945954.CrossRefGoogle Scholar
Robertson, H.M., and Lampe, D.J. 1995 a. Distribution of transposable elements in arthropods. Annual Review of Entomology, 40: 333357.CrossRefGoogle ScholarPubMed
Robertson, H.M., and Lampe, D.J. 1995 b. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Molecular Biology and Evolution, 12: 850862.Google ScholarPubMed
Robertson, H.M., and MacLeod, E.G. 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Molecular Biology, 2: 125139.CrossRefGoogle ScholarPubMed
Robertson, H.M., Lampe, D.J., and MacLeod, F.G. 1992. A mariner transposable element from a lacewing. Nucleic Acids Research, 20: 64096410.CrossRefGoogle ScholarPubMed
Russell, V.W., and Shukle, R.H. 1997. Molecular and cytological analysis of a mariner transposon from Hessian fly. Journal of Heredity, 88: 7276.CrossRefGoogle ScholarPubMed
Sambrook, J., and Russell, D.W. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
Shukle, R.H., and Russell, V.W. 1995. Mariner transposase-like sequences from the Hessian fly, Mayetiola destructor. Journal of Heredity, 86: 364368.CrossRefGoogle ScholarPubMed
Smith, M.A.H., Lamb, R.J., Wise, I.L., and Olfert, O.O. 2004. An interspersed refuge for Sitodiplosis mosellana (Diptera: Cecidomyiidae) and a biocontrol agent Macroglenes penetrans (Hymenoptera: Pteromalidae) to manage crop resistance in wheat. Bulletin of Entomological Research, 94: 179188.CrossRefGoogle Scholar
Strausbaugh, L.D., Bourke, M.T., Sommer, M.T., Coon, M.E., and Berg, C.M. 1990. Probe mapping to facilitate transposon-based DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 87: 62136217.CrossRefGoogle ScholarPubMed
Thompson, J.D., Gidson, T.J., Plewniak, F., and Jeanmougin, F. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 22: 46734680.CrossRefGoogle Scholar
Wise, I.L., Lamb, R.J., and Smith, M.A.H. 2001. Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). The Canadian Entomologist, 133: 255267.CrossRefGoogle Scholar
Wright, A.T., and Doane, J.F. 1987. Wheat midge infestation of spring cereals in northeastern Saskatchewan. Canadian Journal of Plant Sciences, 67: 117120.CrossRefGoogle Scholar