Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T07:07:57.888Z Has data issue: false hasContentIssue false

Host-range testing of a mixture of two nucleopolyhedroviruses of Choristoneura fumiferana (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  03 January 2012

William J. Kaupp
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
Kevin N. Barber
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
William E. Fick
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
Peter M. Ebling
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
Tim R. Ladd
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
Stephen B. Holmes*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
*
2Corresponding author (e-mail: [email protected]).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The host range of a mixture of Choristoneura fumiferana (Clemens) nucleopolyhedroviruses (CfMNPV and CfDefNPV) was investigated using a per os bioassay of larvae of 29 species of Lepidoptera and adult males of Megachile rotundata (F.) (Hymenoptera: Megachilidae). Using a whole-genomic DNA probe, positive results were obtained in 8 of 10 Tortricidae: Archips cerasivorana (Fitch), Choristoneura fractivittana (Clemens), C. fumiferana, Choristoneura occidentalis Freeman, Choristoneura pinus pinus Freeman, Choristoneura rosaceana (Harris), Clepsis persicana (Fitch), and Cydia pomonella (L.); one Crambidae: Ostrinia nubilalis (Hübner); one arctiine Erebidae: Estigmene acrea (Drury); and two Noctuidae: Oligia illocata (Walker) and Pyrrhia exprimens (Walker). Mortality rates were highest among C. fumiferana, C. occidentalis, C. pinus pinus, A. cerasivorana, and C. pomonella. Sequenced polymerase chain reaction (PCR) amplicons from infected individuals from several species confirmed that the primer sets amplified the target viruses. CfMNPV was consistently found in virus-fed C. fumiferana; whereas, CfDefNPV was present only occasionally. The presence of CfMNPV and CfDefNPV in A. cerasivorana was confirmed by PCR and DNA sequencing. Significant treatment-mortality rates were induced in the noctuids P. exprimens and Acronicta impleta Walker; PCR determined that both viruses were present in treated P. exprimens but only CfMNPV was present in A. impleta. No virus was detected in M. rotundata.

Résumé

Nous avons étudié la gamme des hôtes d’un mélange de virus de la nucléopolyhédrose (CfMNPV et CfDefNPV) de Choristoneura fumiferana (Clemens) au moyen de bioessais par voie orale chez des larves de 29 espèces de lépidoptères et des mâles adultes de Megachile rotundata (F.) (Hymenoptera : Megachilidae). À l’aide d’une sonde ADN de génome entier, nous avons obtenu des résultats positifs chez 8 de 10 tortricidés, Archips cerasivorana (Fitch), Choristoneura fractivittana (Clemens), C. fumiferana, Choristoneura occidentalis Freeman, Choristoneura pinus pinus Freeman, Choristoneura rosaceana (Harris), Clepsis persicana (Fitch) et Cydia pomonella (L.) ; un crambidé, Ostrinia nubilalis (Hübner) ; un érebidé arctiiné, Estigmene acrea (Drury) ; et deux noctuidés, Oligia illocata (Walker) et Pyrrhia exprimens (Walker). Les taux de mortalité sont maximaux chez C. fumiferana, C. occidentalis, C. pinus pinus, A. cerasivorana et C. pomonella. Les amplicons séquencés de l’amplification en chaîne par polymérase (PCR) provenant d’individus infectés appartenant à plusieurs espèces confirment que les jeux d’amorces amplifient les virus ciblés. Le CfMNPV se retrouve constamment chez les C. fumifera nourris de virus, alors que le CfDefNPV n’apparaît qu’occasionnellement. La présence du CfMNPV et du CfDefNPV chez A. cerasivorana est confirmée par la PCR et le séquençage d’ADN. Des taux de mortalité significatifs reliés au traitement ont été provoqués chez les noctuidés P. exprimens et Acronicta impleta Walker; la PCR a déterminé que les deux virus sont présents chez les P. exprimens traités, mais seul CfMNPV apparaît chez A. impleta. Aucun virus n’a été décelé chez M. rotundata.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265267.CrossRefGoogle Scholar
Arif, B.M., and Brown, K 1975. Purification and properties of a nuclear polyhedrosis virus from Choristoneura fumiferana. Canadian Journal of Microbiology, 21: 12241231. doi:10.1139/m75-183. PMID:1100209.CrossRefGoogle ScholarPubMed
Arif, B.M., Jamieson, P., Sohi, S, Kaupp, W., and MacDonald, J.A 1994. Symbiotic-like relationship between two MNPVs of the spruce budworm, Choristoneura fumiferana. In Proceedings of the VIth International Colloquium on Invertebrate Pathology and Microbial Control, XXVIIth Annual Meeting of the Society for Invertebrate Pathology, Montpellier, France, 28 August – 2 September 1994. pp. 145–146.Google Scholar
Barber, K.N., Kaupp, W, and Holmes, S 1993. Specificity testing of the nuclear polyhedrosis virus of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). The Canadian Entomologist, 125: 10551066. doi:10.4039/Ent1251055-6.CrossRefGoogle Scholar
Barrett, J.W., Krell, P, and Arif, B 1995. Characterization, sequencing and phylogeny of the ecdysteroid UDP-glucosyltransferase gene from two distinct nuclear polyhedrosis viruses isolated from Choristoneura fumiferana. Journal of General Virology, 76: 24472456. doi:10.1099/0022-1317-76-10-2447. PMID:7595348.CrossRefGoogle ScholarPubMed
Bell, R.A., Owens, C, Shapiro, M., and Tardif, J 1981. Development of mass-rearing technology. In The Gypsy Moth: Research toward integrated pest management. Edited by Doane, C.C., and McManus., M.L.. USDA Technical Bulletin 1584 Washington, DC. pp. 599655.Google Scholar
Burke, J., and Percy, J. 1982. Survey of pathogens in the large aspen tortrix, Choristoneura conflictana (Lepidoptera: Tortricidae), in Ontario and British Columbia with particular reference to granulosis virus. The Canadian Entomologist, 114: 457459. doi:10.4039/Ent114457-5.CrossRefGoogle Scholar
Cory, J.S., Jirst, M, Sterling, P, and Speight, M.R. 2000. Narrow host range nucleopolyhedrovirus of the browntail moth (Lepidoptera: Lymantriidae). Environmental Entomology, 29: 661667. doi:10.1603/0046-225X-29.3.661.CrossRefGoogle Scholar
Cunningham, J.C., Kaupp, W.J., and McPhee, J.R. 1983 a. A comparison of the pathogenicity of two baculoviruses to the spruce budworm and the western spruce budworm. Canadian Forestry Service Research Notes, 3: 910.Google Scholar
Cunningham, J.C., Kaupp, W.J., McPhee, J.R., and Shepherd, R.F 1983 b. Ground spray trials with two baculoviruses on western spruce budworm. Canadian Forestry Service Research Notes, 3: 1011.Google Scholar
Dang, P.T. 1992. Morphological study of male genitalia with phylogenetic inference of Choristoneura Lederer (Lepidoptera: Tortricidae). The Canadian Entomologist, 124: 748.CrossRefGoogle Scholar
Dougherty, E.M., Cantwell, G.E., and Kuchinski, M. 1982. Biological control of the greater wax moth (Lepidoptera: Pyralidae), utilizing in vivo and in vitro-propagated baculovirus. Journal of Economic Entomology, 75: 675679.CrossRefGoogle Scholar
Ebling, P.M. 2004. Comparative activity of Choristoneura fumiferana nucleopolyhedrovirus propagated in different hosts. Pest Management Science, 60: 631638. doi:10.1002/ps.854. PMID:15260292.CrossRefGoogle ScholarPubMed
Ebling, P.M., and Holmes, S 2002. A refined method for the detection of baculovirus occlusion bodies in forest terrestrial and aquatic habitats. Pest Management Science, 58: 12161222. doi:10.1002/ps.591. PMID:12476994.CrossRefGoogle ScholarPubMed
Ennis, T., and Caldwell, E.N. 1991. Spruce budworm, chemical and biological control. In Tortricid pests: Their biology, natural enemies and control. Vol. 5. World crop pests. Edited by Geest, L.P.S. van der and Evenhuis., J.H.Elsevier Science Publishers B.V., Amsterdam, the Nether lands. pp. 621641.Google Scholar
Goerzen, D.W., Erlandson, M.A., and Moore, K.C. 1990. Effect of two insect viruses and two entomopathogenic fungi on larval and pupal development in the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hymenoptera: Megachilidae). The Canadian Entomologist, 122: 10391040. doi:10.4039/Ent1221039-9.CrossRefGoogle Scholar
Goulson, D., 2003. Can host susceptibility to baculovirus infection be predicted from host taxonomy or life history? Environmental Entomology, 32: 6170. doi:10.1603/0046-225X-32.1.61.CrossRefGoogle Scholar
Gross, H.R., Hamm, J.J., and Carpenter, J.E. 1994. Design and application of a hive-mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate Heliothis nuclear polyhedrosis virus. Environmental Entomology, 23: 492501.CrossRefGoogle Scholar
Harvey, G.T. 1996. Genetic relationships among Choristoneura species (Lepidoptera: Tortricidae) in North America as revealed by isozyme studies. The Canadian Entomologist, 128: 245262. doi:10.4039/Ent128245-2.CrossRefGoogle Scholar
Heinz, K.M., McCutchen, B.F., Herrmann, F., Par-rella, M.P., and Hammock, B.D. 1995. Direct effects of recombinant nuclear polyhedrosis viruses on selected nontarget organisms. Journal of Economic Entomology, 88: 259264. PMID:7722081CrossRefGoogle ScholarPubMed
Holmes, S.B., Fick, W.E., Kreutzweiser, D.P., Ebling, P.M., England, L.S., and Trevors, J.T. 2008. Persistence of naturally occurring and genetically modified Choristoneura fumiferana nucleopolyhedroviruses in outdoor aquatic microcosms. Pest Management Science, 64: 10151023. doi:10. 1002/ps.1600. PMID:18470960.CrossRefGoogle ScholarPubMed
Jehle, J.A., Blissard, G.W., Bonning, B.C., Cory, J.S., Herniou, E.A., Rohrmann, G.F., Theilmann, D.A., Thiem, S.M., and Vlak, J 2006. On the classification and nomenclature of baculoviruses: A proposal for revision. Archives of Virology, 151: 12571266. doi:10.1007/s00705-006-0763-6. PMID:16648963.CrossRefGoogle ScholarPubMed
Kaupp, W.A., and Ebling, P.M. 1990. Response of third-, fourth-, fifth-, and sixth-instar spruce budworm, Choristoneura fumiferana (Clem.), larvae to nuclear polyhedrosis virus. The Canadian Entomologist, 122: 10371038. doi:10.4039/Ent1221037-9.CrossRefGoogle Scholar
Kaupp, W.A., and Ebling, P.M 1993. Horseradish peroxidase-labelled probes and enhanced chemiluminescence to detect baculoviruses in gypsy moth and eastern spruce budworm larvae. Journal of Virological Methods, 44: 8998. doi:10.1016/0166-0934(93)90011-F. PMID:8227282.CrossRefGoogle ScholarPubMed
Kingsbury, P., McLeod, B., and Mortensen, K. 1978. Impact of applications of the nuclear polyhedrosis virus of the red-headed pine sawfly, Neodiprion lecontei (Fitch), on non-target organisms in 1977. Department of Fisheries and the Environment, Canadian Forestry Service, Forest Pest Management Institute, Sault Ste. Marie, Ontario. Report FPM-X-11. 27 pp.Google Scholar
Kreutzweiser, D.P., Ebling, P.M., and Holmes, S.B. 1997. Infectivity and effects of gypsy moth and spruce budworm nuclear polyhedrosis viruses ingested by rainbow trout. Ecotoxicology and Environmental Safety, 38: 6370. doi:10.1006/eesa.1997.1562. PMID:9352215.CrossRefGoogle ScholarPubMed
Lafontaine, J.D., and Schmidt, B.C. 2010. Annotated check list of the Noctuoidea (Insecta, Lepidoptera) of North America north of Mexico. ZooKeys, 40: 1239 (2010) doi: 10.3897/zookeys. 40.414.CrossRefGoogle Scholar
Lauzon, H.A.M., Jamieson, P.B., Krell, P.J, and Arif, B.M. 2005. Gene organization and sequencing of the Choristoneura fumiferana defective nucleopolyhedrovirus genome. Journal of General Virology, 86: 945961. doi:10.1099/vir.0. 80489-0. PMID:15784888.CrossRefGoogle ScholarPubMed
Lucarotti, C.J., and Morin, B. 1997. A nuclear polyhedrosis virus from the obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Journal of Invertebrate Pathology, 70: 121126. doi:10.1006/jipa. 1997.4665. PMID:9281399.CrossRefGoogle ScholarPubMed
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist, 97: 5863. doi:10.4039/Ent9758-1.Google Scholar
Miller, L.K., and Lu, A. 1997. The molecular basis of baculovirus host range. In The baculoviruses. Edited by Miller, L.K.. Plenum Press, New York, New York. pp. 217235.CrossRefGoogle Scholar
Morton, H.L., Moffett, J.O, and Stewart, F.D 1975. Effect of alfalfa looper nuclear polyhedrosis virus on honeybees. Journal of Invertebrate Pathology, 26: 139140. doi:10.1016/0022-2011(75)90184-6.CrossRefGoogle Scholar
Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44: 257289. doi:10. 1146/annurev.ento.44.1.257. PMID:15012374.CrossRefGoogle ScholarPubMed
Pest Management Regulatory Agency. 2001. Guidelines for registration of microbial pest control agents and products. Health Canada, Pest Management Regulatory Agency, Submission Management and Information Division, Ottawa, Ontario. Regulatory Directive DIR2001-02. 99 pp.Google Scholar
Pest Management Regulatory Agency. 2010. Product information [online]. Available from http://pr-rp.pmra-arla.gc.ca/portal/page?_pageid534,17551&_dad5portal&_schema5PORTAL [accessed 14 May2010].Google Scholar
Richards, A., Matthews, M., and Christian, P. 1998. Ecological considerations for the environmental impact evaluation of recombinant baculovirus insecticides. Annual Review of Entomology, 43: 493517. doi:10.1146/annurev.ento.43.1.493. PMID:15012397.CrossRefGoogle ScholarPubMed
Shapiro, M., Martignoni, M.E., Cunningham, J.C., and Goodwin, R.H 1982. Potential use of the saltmarsh caterpillar as a production host for nucleopolyhedrosis viruses. Journal of Economic Entomology, 75: 6971.CrossRefGoogle Scholar
Shorey, H.H., and Hale, R.L. 1965. Mass rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58: 522524.CrossRefGoogle Scholar
Sperling, A.H., and Hickey, D.A. 1994. Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Molecular Biology and Evolution, 11: 656665. PMID:8078404Google ScholarPubMed
Stairs, G.R. 1960. Infection of the jack pine budworm, Choristoneura pinus Freeman, with a nuclear polyhedrosis virus of the spruce budworm, Choristoneura fumiferana (Clemens), (Lepidoptera: Tortricidae). The Canadian Entomologist, 92: 906908. doi:10.4039/Ent92906-12.CrossRefGoogle Scholar
Stairs, G.R., Fraser, T., and Fraser, M. 1981. Changes in growth and virulence of a nuclear polyhedrosis virus from Choristoneura fumiferana after passage in Trichoplusia ni and Galleria mellonella. Journal of Invertebrate Pathology, 38: 230235. doi:10.1016/0022-2011(81)90127-0.CrossRefGoogle Scholar
Theilmann, D.A., Blissard, G.W., Bonning, B., Jehle, J., O'Reilly, D.R., Rohrmann, G.F., Thiem, S., and Vlak, J.M. 2005. Baculoviridae. In Virus taxonomy. Eighth report of the International Committee on Taxonomy of Viruses, Virology Division, International Union of Microbiological Societies. Edited by Fauquet, C.M., Mayo, J. Maniloff, U. Desselberger, and L.A. Ball. Elsevier Academic Press, San Diego, California. pp. 177185.Google Scholar
United States Environmental Protection Agency. 2010. Biopesticide active ingredient fact sheets [online]. Available from http://www.epa.gov/oppbppd1/biopesticides/ingredients/index_ab.htm [accessed 14 May 2010].Google Scholar
Valéro, J.R. 1990. Microbiologie contre tordeuse: recherches á forêt Canada – region du Québec. L'Aubelle, 81: 1215.Google Scholar
Whitehead, T.P., Thorpe, G.H.G., Carter, T.N., Groucutt, C., and Kricka, L.J. 1983. Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay. Nature, 305: 158159. doi:10.1038/305158a0.CrossRefGoogle Scholar
Wigley, P.J. 1980. Counting microorganisms. In Microbial control of insect pests. Edited by Kalmakoff, J. and Longworth., J.F.New Zealand Department of Science and Industrial Research Bulletin, 228 Wellington. pp. 2935.Google Scholar