Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T07:07:11.514Z Has data issue: false hasContentIssue false

GUT PROTEINASE ACTIVITY IN INSECT PESTS OF CANOLA1

Published online by Cambridge University Press:  31 May 2012

Robert T. Rymerson
Affiliation:
Agriculture and Agri-Food Canada, Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
Robert P. Bodnaryk
Affiliation:
Agriculture and Agri-Food Canada, Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

The digestive proteinases of three important pests of canola, Brassica napus L. and B. rapa L., in western Canada were characterized by assessing the proteolytic activity of homogenates of their midguts against azocasein or azoalbumin at various pH levels and in the presence of diagnostic proteinase inhibitors. The midgut of larvae of the bertha armyworm, Mamestra configurata Wlk., had maximum proteolytic activity at pH 10.5 which was inhibited 45–60% by serine proteinase inhibitors such as the soybean trypsin inhibitor. The midgut of larvae of the diamondback moth, Plutella xylostella L., had maximum proteolytic activity at pH 10 which was inhibited 56–75% by serine proteinase inhibitors. The two lepidopterans thus use a serine-like proteinase in digestion. The midgut of adults of the flea beetle, Phyllotreta cruciferae Goeze, exhibited maximum proteolytic activity at pH 5 which was inhibited 33–61% by specific cysteine proteinase inhibitors such as cystatin and trans-epoxysuccinyl-L-leucylamido (4-guanidino)-butane (E-64) and was activated strongly by L-cysteine. Aspartic proteinase inhibitors such as pepstatin A also decreased proteolytic activity by 21–50%. Serine proteinase inhibitors were without effect. Therefore, P. cruciferae appears to use both cysteine- and aspartic-like proteinases in digestion. Cotyledons and first true leaves of canola, B. napus cv. Westar, contained inhibitory activity against serine, cysteine, and aspartic proteinases when tested against bovine trypsin, papain, or porcine pepsin, but the level of antiproteinase activity is insufficient to provide significant resistance against any of these pests.

Résumé

Les protéinases digestives de trois parasites importants du colza, Brassica napus L. et B. rapa L., dans l’ouest du Canada ont été analysées par évaluation de l’activité protéolytique d’homogénats de leur intestin moyen contre l’azocaséine ou l’azoalbumine à différents pH et en présence d’inhibiteurs spécifiques des protéinases. Dans l’intestin moyen des larves de la Légionnaire bertha, Mamestra configurata Wlk., l’activité protéolytique est maximale à pH 10,5 et elle est inhibée de 45–60% par les inhibiteurs de la serine protéinases, tels l’inhibiteur de la trypsine de la fève soja. Chez les larves de la Fausse Teigne des crucifères, Plutella xylostella L., l’activité protéolytique est maximale à pH 10 et elle est inhibée à 56–75% par les inhibiteurs de la sérine protéinase. Les deux lépidoptères possèdent donc une protéinase digestive de type sérine. L’activité protéolytique maximale dans l’intestin moyen des adultes de Phyllotreta cruciferae Goeze, l’Altise des crucifères, se produit à pH 5 et est inhibée à 33–61% par des inhibiteurs spécifiques de la cystéine protéinase, tels la cystatine et le trans-époxysuccinyl-L-leucylamido (4-guanidino)-butane (E-64); elle est fortement activée par la L-cystéine. Les inhibiteurs de la protéinase aspartique, tels la pepstatine A, diminuent également l’activité protéolytique de 21–50%. Les inhibiteurs de la sérine protéinase sont restés sans effet. Les adultes de P. cruciferae utilisent donc des protéinases de types cystéine et de type aspartique dans leur digestion. Les cotylédons et les premières vraies feuilles du colza B. napus cv. Westar ont une activité inhibitrice contre la sérine protéinases, la cystéine protéinase et la protéinase aspartique en présence de trypsine de bovin, de papaïne ou de pepsine de porc, mais l’intensité de l’activité antiprotéinase est insuffisante pour procurer à la plante une résistance de quelque importance contre ces parasites.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belitz, H.D., Lynen, F., and Weder, K.P.. 1982. Comparative studies on the inhibitory action of some legume seeds, potato tubers, and bran against human and bovine proteinases. Zeitschrift fuer Lebensmittel-Untersuchung und-Forschung 174: 442446.CrossRefGoogle ScholarPubMed
Bodnaryk, R.P. 1992. Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Canadian Journal of Plant Science 72: 12951303.CrossRefGoogle Scholar
Bodnaryk, R.P., and Lamb, R.J.. 1991. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in yellow mustard seedlings, Sinapis alba L. Canadian Journal of Plant Science 71: 1320.CrossRefGoogle Scholar
Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248254.CrossRefGoogle ScholarPubMed
Broadway, R.M. 1989. Tryptic inhibitory activity in wild and cultivated crucifers. Phytochemistry 28: 755758.CrossRefGoogle Scholar
Broadway, R.M., Duffey, S.S., Pearce, G., and Ryan, C.A.. 1986. Plant proteinase inhibitors: A defense against herbivorous insects? Entomologia Experimentalis et Applicata 41: 3338.CrossRefGoogle Scholar
Burgess, L., and Weins, J.E.. 1980. Dispensing allyl isothiocyanate as an attractant for trapping crucifer-feeding flea beetles. The Canadian Entomologist 112: 9397.CrossRefGoogle Scholar
Charney, J., and Tomarelli, R.M.. 1947. A colorimetric method for the determination of the proteolytic activity of duodenal juice. The Journal of Biological Chemistry 171: 501505.CrossRefGoogle ScholarPubMed
Christeller, J.T., Laign, W.A., Marwick, N.P., and Burgess, E.P.J.. 1992. Midgut protease activities in 12 phytophagous lepidopteran larvae: Dietary and protease inhibitor interactions. Insect Biochemistry and Molecular Biology 22: 735746.CrossRefGoogle Scholar
Christeller, J.T., and Shaw, B.D.. 1989. The interaction of a range of serine proteinase inhibitors with bovine trypsin and Costeytra zealandica trypsin. Insect Biochemistry 19: 233241.CrossRefGoogle Scholar
Gatehouse, A.M.R., Boulter, D., and Hilder, V.A.. 1991. Novel insect resistance using protease inhibitor genes. pp. 63–77 in Dennis, E.S., and Llewellyn, D.J. (Eds.), Molecular Approaches to Crop Improvement. Springer-Verlag, Wien/New York, NY.Google Scholar
Gillikin, J.W., Bevilacqua, S., and Graham, J.S.. 1992. Partial characterization of digestive tract proteinases from western corn rootworm larvae, Diabrotica virgifera. Archives of Insect Biochemistry and Physiology 19: 285298.CrossRefGoogle Scholar
Green, T.R., and Ryan, C.A.. 1972. Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science 175: 776777.CrossRefGoogle ScholarPubMed
Hanada, K., Tamai, M., Yamagishi, M., Ohmura, S., Sawada, J., and Tanaka, I.. 1978. Isolation and characterization of E-64, a new thiol proteinase inhibitor. Agricultural and Biological Chemistry 42: 523530.Google Scholar
Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, R.F., and Boulter, D.. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature, London 330: 160163.Google Scholar
Hines, M.E., Osuala, C.I., and Nielsen, S.S.. 1991. Isolation and partial characterization of a soybean cystatin cysteine proteinase inhibitor of coleopteran digestive proteolytic activity. Journal of Agriculture and Food Chemistry 39: 15151520.CrossRefGoogle Scholar
Johnson, R., Narvaez, J., An, G., and Ryan, C.. 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca sexta larvae. Proceedings of National Academy of Sciences, USA 86: 98719875.CrossRefGoogle Scholar
Jungreis, A.M., Jatlow, P., and Wyatt, G.R.. 1973. Inorganic ion composition of haemolymph of the cecropia silkmoth: Changes with diet and ontogeny. Journal of Insect Physiology 18: 225233.CrossRefGoogle Scholar
Lamb, R.J., McVetty, P.B.E., Palaniswamy, P., Bodnaryk, R.P., and Jeong, S.E.. 1993. Susceptibility of inbred lines of oilseed rape, Brassica napus, to feeding damage by the crucifer flea beetle, Phyllotreta cruciferae (Goeze) [Coleoptera: Chrysomelidae], and its inheritance. Canadian Journal of Plant Science 73: 615623.CrossRefGoogle Scholar
Lemos, F.J.A., Campos, F.A.P., Silva, C.P., and Xavier-Filho, J.. 1990. Proteinases and amylases of larval midgut of Zabrotes subfasciatus reared on cowpea (Vigna unguicula) seeds. Entomologia Experimentalis et Applicata 56: 219227.CrossRefGoogle Scholar
Murdock, L.L., Brookhart, G., Dunn, P.E., Foard, D.E., Kelley, S., Kitch, L., Shade, R.E., Shuckle, R.H., and Wolfson, J.L.. 1987. Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology 87B: 783787.Google Scholar
Palaniswamy, P., Lamb, R.J., and McVetty, P.B.E.. 1992. Screening for antixenosis resistance to flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae), in oilseed rape and related crucifers. The Canadian Entomologist 124: 895906.CrossRefGoogle Scholar
Ryan, C.A. 1989. Proteinase inhibitor gene families: Strategies for transformation to improve plant defenses against herbivores. Bioessays 10: 2024.CrossRefGoogle ScholarPubMed
Ryan, C.A. 1990. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annual Review of Phytopathology 28: 425449.CrossRefGoogle Scholar
Statistics Canada. 1993. Field Crop Reporting Series, September.Google Scholar
Thie, N.M.R., and Houseman, J.G.. 1990. Identification of cathepsin B, D and H in the larval midgut of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Insect Biochemistry 20: 313318.CrossRefGoogle Scholar
Wolfson, J.L., and Murdock, L.L.. 1987. Suppression of larval Colorado potato beetle growth and development by digestive proteinase inhibitors. Entomologia Experimentalis et Applicata 44: 235240.CrossRefGoogle Scholar
Wolfson, J.L., and Murdock, L.L.. 1990. Diversity in digestive proteinase activity among insects. Journal of Chemical Ecology 16: 10891102.CrossRefGoogle ScholarPubMed