Published online by Cambridge University Press: 29 April 2016
Movement between host plants during the growing season is a common behaviour among insect herbivores, although the mechanisms promoting these movements are poorly understood for many systems. Two possible reasons why insect herbivores relocate include compensating for host plant quantity and/or quality changes and the avoidance of natural enemies. The Arctic caterpillar (Gynaephora groenlandica (Wocke); Lepidoptera: Lymantriidae) moves several metres each day, feeds on its patchily distributed host plant, Arctic willow (Salix arctica Pallas; Salicaceae), and has two main natural enemies, the parasitoids Exorista thula Wood (Diptera: Tachinidae) and Hyposoter diechmanni (Nielsen) (Hymenoptera: Ichneumonidae). We physically moved caterpillars between Arctic willows and restricted other caterpillar individuals each to a single willow throughout the active period of Arctic caterpillars. We found that growth rate, herbivory rate, and the proportion of available leaf fascicles eaten were higher for experimentally moved caterpillars. Parasitoid abundances were low and did not differ between experimentally moved and stationary caterpillars. Taken together, our study addresses the bottom–up and top–down controls on insect herbivore movement during the short duration of the growing season in the Arctic. Our results suggest that caterpillars are likely moving to new willow shrubs to access high quality resources.
Subject Editor: Chris Schmidt