Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T18:30:45.448Z Has data issue: false hasContentIssue false

FORUM: INSECTS AND TEMPERATURE—A GENERAL THEORY

Published online by Cambridge University Press:  31 May 2012

N. Gilbert
Affiliation:
Entomology Field Station, 219a Huntingdon Road, Cambridge CB3 0DL
D.A. Raworth
Affiliation:
Agriculture and Agri-Food Canada, Pacific Agriculture Research Centre, 6660 NW Marine Drive, Vancouver, British Columbia, Canada V6T 1X2

Abstract

Insects are selected for slow development (but relatively fast growth) in spring, but for fast development in summer. These contrasting selection pressures explain five puzzling effects of temperature on insects: growth and development rates increase almost linearly with temperature; genetic variability in development rate is reduced at high (27°C) temperatures; genetic variability in growth rate is reduced at low (15°C) temperatures; development is very slow at the time of emergence after diapause, regardless of the temperature threshold for emergence; and growth is slow at low temperatures, but development is even slower.

Insects use temperature to indicate time-of-season. Different species are geared differently to rising temperatures. Insect predators and parasitoids become more effective at high temperatures; and insect population dynamics are not stable in the conventional sense.

Résumé

Chez les insectes, la sélection favorise le développement lent (mais une croissance relativement rapide) au printemps, mais le développement rapide en été. Ces pressions de sélection opposées expliquent cinq effets étonnants de la température sur les insectes : les taux de croissance et de développement augmentent presque linéairement en fonction de la température; la variabilité génétique du taux de développement est réduite à des températures élevées (27°C); la variabilité génétique du taux de croissance est réduite aux températures faibles (15°C); le développement est très lent au moment de la sortie de la diapause, quel que soit le seuil de température qui déclenche la fin de la diapause; la croissance est lente aux températures faibles, mais le développement l’est encore plus.

Les insectes utilisent la température comme indicateur du moment de la saison. Différentes espèces réagissent différemment aux températures montantes. Les prédateurs et les parasitoïdes deviennent plus efficaces aux température plus élevées; la dynamique des population d’insectes ne peut être considérée comme «stable» selon le sens conventionnel du terme.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, J.F., Mackenzie, D.H., Morton, R., and Schafer, C.A.. 1981. Phasic development in field crops. Field Crops Research 4: 269283.CrossRefGoogle Scholar
Atlas, M. 1935. The effect of temperatures on the development of Rana pipiens. Physiological Zoology 8: 290310.CrossRefGoogle Scholar
Barton, N.H., and Turelli, M.. 1989. Evolutionary quantitative genetics: How little do we know? Annual Review of Genetics 23: 337370.CrossRefGoogle ScholarPubMed
Baumgaertner, J.U., Frazer, B.D., Gilbert, N., Gill, B., Gutierrez, A.P., Ives, P.M., Nealis, V., Raworth, D.A., and Summers, C.G.. 1980. Coccinellids and aphids. The Canadian Entomologist 113: 9751048.CrossRefGoogle Scholar
Bliss, C.I. 1926. Temperature characteristics for prepupal development of Drosophila melanogaster. Journal of General Physiology 9: 476495.Google ScholarPubMed
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11: 431438.CrossRefGoogle Scholar
Charlesworth, B. 1980. Evolution in Age-structured Populations. Cambridge University Press, Cambridge. 300 pp.Google Scholar
Clarke, J.M., Smith, J.M., and Sondhi, K.C.. 1961. Asymmetrical response to selection for rate of development in Drosophila subobscura. Genetical Research 2: 7081.CrossRefGoogle Scholar
Danks, H.V. 1987. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario. 439 pp.Google Scholar
Danks, H.V. 1994. Diversity and integration of life-cycle controls in insects. pp. 5–40 in Danks, H.V. (Ed.), Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control. Kluwer Academic Publishers, Dordrecht. 378 pp.CrossRefGoogle Scholar
Dixon, A.F.G., Chambers, R. J., and Dharma, T.R.. 1982. Factors affecting size in aphids with particular reference to the black bean aphid, Aphis fabae. Entomologia experimentalis et applicata 32: 123128.CrossRefGoogle Scholar
Frazer, B.D., and Forbes, A.R.. 1968. Masonaphis maxima (Mason) (Homoptera:Aphididae), an aphid on thimbleberry with an unusual life history. Journal of the Entomological Society of British Columbia 65: 3639.Google Scholar
Giesel, J.T., Murphy, P., and Manlove, M.. 1982. An investigation of the effects of temperature on the genetic organization of life history indices in three populations of Drosophila melanogaster. pp. 189–207 in Dingle, H., and Hegmann, J.P. (Eds.), Evolution and Genetics of Life Histories. Springer, New York, NY. 250 pp.Google Scholar
Gilbert, N. 1982. Comparative dynamics of a single-host aphid. Journal of Animal Ecology 51: 469480.CrossRefGoogle Scholar
Giesel, J.T., Murphy, P., and Manlove, M.. 1984 a. Control of fecundity in Pieris rapae. I. The Problem. Journal of Animal Ecology 53: 581588.Google Scholar
Giesel, J.T., Murphy, P., and Manlove, M.. 1984 b. Control of fecundity in Pieris rapae. II. Differential effects of temperature. Journal of Animal Ecology 53: 589597.Google Scholar
Giesel, J.T., Murphy, P., and Manlove, M.. 1986. Control of fecundity in Pieris rapae. IV. Patterns of variation and their ecological consequences. Journal of Animal Ecology 55: 317329.Google Scholar
Giesel, J.T., Murphy, P., and Manlove, M.. 1988. Control of fecundity in Pieris rapae. V. Comparisons between populations. Journal of Animal Ecology 57: 395410.Google Scholar
Gilbert, N., and Coaker, T.H.. 1988. Differential survival of British and mediterranean strains of Pieris rapae on different brassica cultivars. Bulletin of Entomological Research 78: 669671.CrossRefGoogle Scholar
Graham, S.M., Watt, W.P., and Gale, L.F.. 1980. Metabolic resource allocation v. mating attractiveness: Adaptive pressures on the “alba” polymorphism in Colias butterflies. Proceedings of the National Academy of Sciences of the United States of America 77: 36153619.CrossRefGoogle Scholar
Hollingsworth, M.J., and Smith, J.M.. 1955. The effects of inbreeding on rate of development and on fertility in Drosophila subobscura. Journal of Genetics 53: 295314.CrossRefGoogle Scholar
Howe, R.W. 1967. Temperature effects on embryonic development in insects. Annual Review of Entomology 12: 1542.CrossRefGoogle ScholarPubMed
Huey, R.B., Partridge, L., and Fowler, K.. 1991. Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45: 751756.CrossRefGoogle ScholarPubMed
Hunter, P.E. 1959. Selection of Drosophila melanogaster for length of larval period. Zeitschrift fuer Vererbungslehre 90: 728.Google ScholarPubMed
Jones, R.E., Hart, J.R., and Bull, G.D.. 1982. Temperature, size and egg production in the cabbage butterfly, Pieris rapae L. Australian Journal of Zoology 30: 223232.CrossRefGoogle Scholar
Lamb, R.J. 1992. Development rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: Implications for estimating rate parameters for insects. Environmental Entomology 21: 1019.CrossRefGoogle Scholar
McLeod, J.H. 1936. Some factors in the control of the common greenhouse aphid, Myzus persicae Sulzer, by the parasite Aphidius phorodontis Ashm. Annual Report of the Entomological Society of Ontario 67: 6364.Google Scholar
McLeod, J.H. 1937. Further notes on parasites of aphids. Annual Report of the Entomological Society of Ontario 68: 4448.Google Scholar
Ministry of Agriculture, Fisheries and Food Meteorological Scheme. 19491987. Summary of Meteorological Observations at Agro-Met Stations.Google Scholar
Morris, R.F. 1971. Observed and simulated changes in genetic quality in natural populations of Hyphantria cunea. The Canadian Entomologist 103: 893906.CrossRefGoogle Scholar
Nylin, S. 1994. Seasonal plasticity and life-cycle adaptations in butterflies. pp. 41–67 in Danks, H.V. (Ed.), Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control. Kluwer Academic Publishers, Dordrecht. 378 pp.Google Scholar
Raworth, D.A. 1984. Population dynamics of the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae) at Vancouver, British Columbia, II. Development, fecundity, and longevity. The Canadian Entomologist 116: 871878.CrossRefGoogle Scholar
Sang, J.H. 1962. Selection of rate of larval development using Drosophila melanogaster cultured axenically on deficient diets. Genetical Research 3: 90109.CrossRefGoogle Scholar
Sang, J.H., and Clayton, G.A.. 1957. Selection for larval development time in Drosophila. Journal of Heredity 48: 265270.CrossRefGoogle Scholar
Scriber, J.M. 1994. Climatic legacies and sex chromosomes: Latitudinal patterns of voltinism, diapause, size, and host-plant selection in two species of swallowtail butterflies at their hybrid zone. pp. 133–171 in Danks, H.V. (Ed.), Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control. Kluwer Academic Publishers, Dordrecht. 378 pp.Google Scholar
Scriber, J.M., and Lederhouse, R.C.. 1983. Temperature as a factor in the development and feeding ecology of tiger swallowtail caterpillars, Papilio glaucus (Lepidoptera). Oikos 40: 95102.CrossRefGoogle Scholar
Wiklund, C., Nylin, S., and Forsberg, J.. 1991. Sex-related variation in growth rate as a result of selection for large size and protandry in a bivoltine butterfly, Pieris napi. Oikos 60: 241250.CrossRefGoogle Scholar