Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:35:00.884Z Has data issue: false hasContentIssue false

First host plant record for Chlamydatus ruficornis Knight and description of nymphs (Heteroptera: Miridae: Phylinae)

Published online by Cambridge University Press:  08 August 2022

Aaron Clark*
Affiliation:
P.O. Box 249, Wheatland, Wyoming, 82201, United States of America

Abstract

Nymphs and adults of Chlamydatus ruficornis Knight were collected in southeast Wyoming, United States of America, under monoculture mats of prostrate knotweed, Polygonum aviculare Linnaeus (Polygonaceae). Adults and instars III–V of this rarely encountered phyline were common in small open areas of bare dirt between overlapping knotweed stems. In captivity, adults and nymphs fed on knotweed stems and occasionally leaves but appeared to avoid inflorescences and seeds. This species is multivoltine and overwinters as eggs in the Laramie Range of Wyoming (elevation 1665 m). A key to the developmental stages of brachypterous nymphs and photographs of each instar are provided. The location of meso- and metafemoral trichobothria and the dorsal abdominal scent gland opening of the nymphal instars are described. A rare macropterous fifth instar is described and photographed.

Type
Research Paper
Copyright
© The Author, 2022. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Andrew Smith

References

Akingbohungbe, A.E., Libby, J.L., and Shenefelt, R.D. 1973. Nymphs of Wisconsin Miridae (Hemiptera: Heteroptera). Research Division Report R2561. University of Wisconsin, College of Agriculture and Life Sciences. Madison, Wisconsin, United States of America. 25 pp.Google Scholar
Ameijeiras-Alonso, J., Crujeiras, R.M., and Rodriguez-Casal, A. 2019. Mod testing, critical bandwidth and excess mass. TEST, 28: 900919.CrossRefGoogle Scholar
Ameijeiras-Alonso, J., Crujeiras, R.M., and Rodriguez-Casal, A. 2021. Multimode: an R package for mode assessment. Journal of Statistical Software, 97: 132.10.18637/jss.v097.i09CrossRefGoogle Scholar
Böcher, J. 1971. Preliminary studies on the biology and ecology of Chlamydatus pullus (Reuter) (Heteroptera: Miridae) in Greenland. Meddelelser om Grønland, 191: 129.Google Scholar
Brown, J.M. 1925. On the nymph of Chlamydatus evanescens Boh. Entomologist’s Monthly Magazine, 61: 5860.Google Scholar
Bugg, R.L., Ehler, L.E., and Wilson, L.T. 1987. Effect of common knotweed (Polygonum aviculare) on abundance and efficiency of insect predators of crop pests. Hilgardia, 55: 153.10.3733/hilg.v55n07p052CrossRefGoogle Scholar
Cobben, R.H. 1978. Evolutionary trends in Heteroptera. Part II. Mouthpart-structures and feeding strategies. Mededelingen Landbouwhogeschool Wageningen 78–5. J. Veenman and Zonen B.V., Wageningen, The Netherlands. 407 pp.Google Scholar
Costamagna, A.C. and Landis, D.A. 2007. Quantifying predation on soybean aphid through direct field observations. Biological Control, 42: 1624.10.1016/j.biocontrol.2007.04.001CrossRefGoogle Scholar
Costea, M. and Tardif, F.J. 2005. The biology of Canadian weeds. 131. Polygonum aviculare L. Canadian Journal of Weed Science, 85: 481506.Google Scholar
Cranshaw, W.S., Halbert, S.E., Favret, C., Britt, K.E., and Miller, G.L. 2018. Phorodon cannabis Passerini (Hemiptera: Aphididae), a newly recognized pest in North America found on industrial hemp. Insecta Mundi, 0662: 112.Google Scholar
Göllner-Scheiding, U. 1972. Beiträge zur Heteropteren: Fauna Brandenburgs. 2. Übersicht über die Heteropteren von Brandenburg. Veroffentl. Bizirksheimat Mus. Potsdam, 25/26: 539.Google Scholar
Henry, T.J. and Wheeler, A.G. 1988. Family Miridae Hahn, 1833 (= Capsidae Burmeister). The plant bugs. In Catalog of the Heteroptera, or true bugs, of Canada and the continental United States. Edited by Henry, T.J. and Froeschner, R.C.. Brill, Leiden, The Netherlands. Pp. 251507.Google Scholar
Kelton, L.A. 1965. Chlamydatus Curtis in North America (Hemiptera: Miridae). The Canadian Entomologist, 97: 11321144. https://doi.org/10.4039/Ent971132-11.CrossRefGoogle Scholar
Kelton, L.A. 1980. The plant bugs of the Prairie Provinces of Canada: Heteroptera: Miridae. Part 8. The insects and arachnids of Canada. Publication 1703. Agriculture Canada, Ottawa, Ontario, Canada. 408 pp.Google Scholar
Knight, H.H. 1959. New genera and species of North American Miridae (Hemiptera). Iowa State College Journal of Science, 33: 421426.Google Scholar
Maw, H.E.L., Foottit, R.G., Hamilton, K.G.A., and Scudder, G.G.E. 2000. Checklist of the Hemiptera of Canada and Alaska. NRC Research Press, Ottawa, Ontario, Canada. 220 pp.Google Scholar
McGavin, G.C. 1979. A taxonomic and phylogenetic study of the immature stages of British Miridae (Hemiptera–Heteroptera). Ph.D. dissertation. University of London, London, United Kingdom. 471 pp.Google Scholar
McIver, J.D. and Stonedahl, G.M. 1987. Biology of the myrmecomorphic plant bug Orectoderus obliquus Uhler (Heteroptera: Miridae: Phylinae). Journal of the New York Entomological Society, 95: 278289.Google Scholar
Polhemus, D.A. 1994. An annotated checklist of the plant bugs of Colorado (Heteroptera: Miridae). Pan-Pacific Entomologist, 70: 122147.Google Scholar
R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R–project.org/ [accessed 24 September 2021].Google Scholar
RStudio Team. 2022. RStudio: integrated development environment for R. RStudio, PBC, Boston, Massachusetts, United States of America. Available from http://www.rstudio.com/ [accessed 24 September 2021].Google Scholar
Schuh, R.T. 1975. The structure, distribution, and taxonomic importance of trichobothria in the Miridae (Hemiptera). American Museum Novitates, 2585: 126.Google Scholar
Schuh, R.T. and Menard, K.L. 2013. A revised classification of the Phylinae (Insects: Heteroptera: Miridae): arguments for the placement of genera. American Museum Novitates, 3785: 172.10.1206/3785.2CrossRefGoogle Scholar
Schuh, R.T. and Schwartz, M.D. 2005. Review of North American Chlamydatus Curtis species, with new synonymy and the description of two new species (Heteroptera: Miridae: Phylinae). American Museum Novitates, 3471: 155.10.1206/0003-0082(2005)471<0001:RONACC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Siegfried, R. and Strauss, G. 2010. Die Wanzenfauna des Naturschutzgebietes alter Flugplatz Karlsruhe (Insecta, Heteroptera; Baden-Württemberg). Carolinea, 68: 7994.Google Scholar
Statisticat, LLC. 2021. LaplacesDemon: complete environment for Bayesian inference. Bayesian-Inference.com. R package version 16.1.6. Available from https://rdrr.io/cran/LaplacesDemon/ [accessed 24 September 2021].Google Scholar
Stephens, G.M. 1982. The plant bug fauna (Heteroptera: Miridae) of grasses (Poaceae) of the Medicine Bow Mountains and Pole Mountain Ranger District, Wyoming. University of Wyoming Agricultural Experiment Station Science Monograph 43. University of Wyoming, Laramie, Wyoming, United States of America. 175 pp.Google Scholar
Symbiotic Collection of Arthropods Network. 2021. Available from https://scan-bugs.org/portal/index.php [accessed 26 August 2021].Google Scholar
Wheeler, A.G. 2001. Biology of the plant bugs (Hemiptera: Miridae) pests, predators, opportunists. Cornell University Press, Ithaca, New York, United States of America. 507 pp.Google Scholar
Woodroffe, G.E. 1955. The Hemiptera–Heteroptera of some cinder-covered waste land at Slough, Buckinghamshire. The Entomologist, 88: 1017.Google Scholar