Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:02:00.519Z Has data issue: false hasContentIssue false

Fecundity and recruitment of eggs during outbreaks of the spruce budworm

Published online by Cambridge University Press:  02 April 2012

V.G. Nealis*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 W Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
J. Régnière
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, PO Box 3800, Sainte-Foy, Quebec, Canada G1V 4C7
*
1Corresponding author (e-mail: [email protected]).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Field data from outbreaks of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), in Ontario and Quebec show that current-year defoliation is the single greatest determinant of variation in fecundity. The species of tree that served as the foodplant and infections by the microsporidian Nosema fumiferanae (Thomson) (Microsporida) had little effect on mean lifetime fecundity in field populations. During a prolonged outbreak at one location (Black Sturgeon Lake, Ontario), annual lifetime fecundity was inversely related to observed defoliation in the same year, with the highest mean fecundity recorded at the beginning and the end of the outbreak when defoliation was least severe. The overall trend in yearly rate of change in egg density in a population time series at Black Sturgeon Lake was associated more closely with generational survival than with fecundity. Measured fecundity of local moths was greater than estimated per capita rates of recruitment in most years of the outbreak at Black Sturgeon Lake. This suggests that in these years of the outbreak at Black Sturgeon Lake there was a net emigration of egg-carrying moths.

Résumé

Nous avons établi, à partir de données provenant de populations naturelles en Ontario et au Québec, que la défoliation du feuillage de l'année est le facteur le plus influent sur la fécondité des populations naturelles de la tordeuse des bourgeons de l'épinette Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) au cours d'une épidémie. L'essence hôte de laquelle provient l'insecte, ou l'infection par Nosema fumiferanae (Thomson) (Microsporida), ont peu d'effet sur la fécondité des populations naturelles. Au cours d'une épidémie prolongée à Black Sturgeon Lake (Ontario), la fécondité était en relation inverse avec la défoliation observée au cours de la même année. La plus forte fécondité a été enregistrée au début et à la fin de l'épidémie lorsque la défoliation était la moindre. La tendance générale du taux de changement intergénérationnel de densité au stade oeuf dans la série temporelle relevée à Black Sturgeon Lake était plus étroitement associée au taux de survie intra-générationnelle qu'à la fécondité. La fécondité des papillons était plus élevée que le taux de recrutement annuel pour la plupart des années de l'épidémie à Black Sturgeon Lake. Ceci suggère une émigration nette de papillons féconds dans la plupart des générations au sein de la population de Black Sturgeon Lake.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

References

Bauer, L.S.Nordin, G.L. 1988. Nutritional physiology of the eastern spruce budworm, Choristoneura fumiferana, infected with Nosema fumiferanae, and interactions with dietary nitrogen. Oecologia 77: 4450CrossRefGoogle ScholarPubMed
Bauer, L.S.Nordin, G.L. 1989. Effect of Nosema fumiferanae (Microsporida) on fecundity, fertility, and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environmental Entomology 18: 261–5CrossRefGoogle Scholar
Biggs, W.D.Constable, D.C.Keizer, A.J.Bolan, P.M. 1994. Results of the forest insect and disease survey in the northwestern region of Ontario, 1993. Canadian Forest Service Information Report O-X-435Google Scholar
Blais, J.R. 1952. The relationship of the spruce budworm (Choristoneura fumiferana, Clem.) to the flowering condition of balsam fir (Abies balsamea (L.) Mill.). Canadian Journal of Zoology 30: 129CrossRefGoogle Scholar
Blais, J.R. 1953. Effects of the destruction of the current year's foliage of balsam fir on the fecundity and habits of flight of the spruce budworm. The Canadian Entomologist 85: 446–8CrossRefGoogle Scholar
Campbell, I.M. 1962. Reproductive capacity in the genus Choristoneura Led. (Lepidoptera: Tortricidae). I. Quantitative inheritance and genes as controllers of rates. Canadian Journal of Genetics and Cytology 4: 272–88CrossRefGoogle Scholar
Candau, J-N, Fleming, R.A.Hopkin, A. 1998. Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Canadian Journal of Forest Research 28: 1733–41CrossRefGoogle Scholar
Delisle, J.Simard, J. 2002. Factors involved in the post-copulatory neural inhibition of pheromone production in Choristoneura fumiferana and C. rosaceana females. Journal of Insect Physiology 48: 181–8CrossRefGoogle ScholarPubMed
Evans, H.J.Melbourne, S. 1990. Results of the forest insect and disease surveys in the north central region of Ontario, 1989. Canadian Forest Service Miscellaneous Report 92Google Scholar
Fettes, J.J. 1950. Investigations of sampling techniques for population studies of the spruce budworm on balsam fir in Ontario. Annual progress report. Sault Ste. Marie, Ontario: Canadian Forest ServiceGoogle Scholar
Greenbank, D.O. 1963. The analysis of moth survival and dispersal in the unsprayed area. pp 8799in Morris, R.F. (Ed), The dynamics of epidemic spruce budworm populations. Memoirs of the Entomological Society of Canada 31Google Scholar
Hardy, Y.Auger, M.Caron, M. 1976. Étude du développement de la tordeuse des bourgeons de l'épinette. Bulletin Technique 2. Québec: Service d'Entomologie et de Pathologie, Ministère des Terres et Forêts du QuébecGoogle Scholar
Howse, G.M.Syme, P.D.Gross, H.L.Myren, D.T.Meating, J.H.Applejohn, M.J.Smith, K.L. 1983. Forest insect and disease conditions in Ontario, 1982. Canadian Forest Service Information Report O-X-350Google Scholar
Leather, S.R. 1988. Size, reproductive potential and fecundity in insects: things aren't as simple as they seem. Oikos 51: 386–9CrossRefGoogle Scholar
Lethiecq, J-L, Régnière, J. 1988. Comparative descriptions of the physical characteristics and vegetation of six sites used by the Canadian Forestry Service in the study of spruce budworm population dynamics. Canadian Forest Service Information Report LAU-X-83Google Scholar
Miller, C.A. 1957. A technique for estimating the fecundity of natural populations of the spruce budworm. Canadian Journal of Zoology 35: 113CrossRefGoogle Scholar
Miller, C.A. 1963. The analysis of fecundity proportion in the unsprayed area. pp 7587in Morris, R.F. (Ed), The dynamics of epidemic spruce budworm populations. Memoirs of the Entomological Society of Canada 31Google Scholar
Morris, R.F. 1955. The development of sampling techniques for forest insect defoliators, with particular reference to the spruce budworm. Canadian Journal of Zoology 33: 225–94CrossRefGoogle Scholar
Morris, R.F. 1963. The dynamics of epidemic spruce budworm populations. Memoirs of the Entomological Society of Canada 31Google Scholar
Nealis, V.G.Régnière, J. 2004. Insect–plant relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. Canadian Journal of Forest Research. In press.CrossRefGoogle Scholar
Nealis, V.G.Smith, S.M. 1986. Interaction of Apanteles fumiferanae (Hymenoptera: Braconidae) and Nosema fumiferanae (Microsporidia) parasitizing spruce budworm, Choristoneura fumiferana (Lepidoptera:Tortricidae). Canadian Journal of Zoology 65: 2047–50CrossRefGoogle Scholar
Perry, D.F.Régnière, J. 1986. The role of fungal pathogens in spruce budworm population dynamics. pp 167–70 in Samson, R.A., Vlak, J.M., Peters, D. (Eds), Fundamental and applied aspects of invertebrate pathology. Wageningen, Netherlands: Foundation of the 4th International Colloquium of Invertebrate PathologyGoogle Scholar
Régnière, J., Lysyk, T.J.Auger, M. 1989. Population density estimation of spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) on balsam fir and white spruce from 45-cm mid-crown branch tips. The Canadian Entomologist 121: 267–81CrossRefGoogle Scholar
Royama, T. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecological Monographs 54: 429–62CrossRefGoogle Scholar
Sanders, C.J. 1988. Monitoring spruce budworm population density with sex pheromone traps. The Canadian Entomologist 120: 175–83Google Scholar
Sanders, C.J. 1991. Biology of North American spruce budworms. pp 579620in van der Geest, L.P.S., Evenhuis, H.H. (Eds), Tortricid pests, their biology, natural enemies and control. Amsterdam, Netherlands:Elsevier Science PublishersGoogle Scholar
Sanders, C.J.Lucuik, G.S. 1975. Effects of photoperiod and size on flight activity and oviposition in the eastern spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 107: 1289–99CrossRefGoogle Scholar
SAS Institute Inc. 1999. SAS/STAT® user's guide. Version 8. Cary, North Carolina: SAS Institute IncGoogle Scholar
Thomson, H.M. 1958. The effect of a microsporidian parasite on the development, reproduction, and mortality of the spruce budworm, Choristoneura fumiferana (Clem.). Canadian Journal of Zoology 36: 499511CrossRefGoogle Scholar
Wellington, W.G.Henson, W.R. 1947. Notes on the effects of physical factors on the spruce budworm, Choristoneura fumiferana (Clem.). The Canadian Entomologist 79: 168–70CrossRefGoogle Scholar
Wilson, G.G. 1980. Effects of Nosema fumiferanae (Microsporida) on rearing stock of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricdae). Proceedings of the Entomological Society of Ontario 111: 115–6Google Scholar
Wilson, G.G. 1987. Observations on the level of infection and intensity of Nosema fumiferanae (Microsporida) in two different field populations of the spruce budworm, Choristoneura fumiferana. Canadian Forestry Service Forest Pest Management Institute Report FPM-X-79Google Scholar