Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T06:59:48.107Z Has data issue: false hasContentIssue false

EVOLUTION IN A LABORATORY HOST–PARASITOID SYSTEM AND ITS EFFECT ON POPULATION KINETICS

Published online by Cambridge University Press:  31 May 2012

Nasser Zareh
Affiliation:
Department of Entomology and Section of Ecology and Systematics, Cornell University, Ithaca, New York 14853
Mark Westoby
Affiliation:
Department of Entomology and Section of Ecology and Systematics, Cornell University, Ithaca, New York 14853
David Pimentel
Affiliation:
Department of Entomology and Section of Ecology and Systematics, Cornell University, Ithaca, New York 14853

Abstract

A laboratory system was developed that allowed populations of the house fly, Musca domestica, and its hymenopterous, wasp parasitoid, Nasonia vitripennis, to interact and fluctuate in numbers, subject only to an upper limit on Musca density. In one (experimental) treatment, the selection pressure from Nasonia was allowed to operate, while in the control all Musca adults were replaced in each generation by individuals from a Musca population not exposed to Nasonia. Evolution for resistance of Musca to Nasonia became noticeable within four generations in the experimental treatment. Measured changes finally included increased fly pupal weight (although larval development period was not allowed to increase), less time spent as pupa, increased pupal mortality, and reduced fecundity of adults. Total per-generation increase of both control and experimental Nasonia was much reduced on experimental compared with control Musca. This was caused by reductions both in the longevity of female Nasonia and in the number of progeny they produced each day. From early in the experiment the increased resistance of Musca produced lower Nasonia densities in the experimental treatment. During the first 20 or so generations no difference could be detected in mean Musca density between the two treatments. After that time the density of adult Musca became greater, and fluctuated less, in the experimental than in the control treatment. This situation continued until the experiment ended at 50 generations.

Résumé

Un système de laboratoire a été développé permettant à des populations de la mouche domestique, Musca domestica, et de son parasitoïde hyménoptère, Nasonia vitripennis, d’interagir et de fluctuer en nombres, la seule limite imposée étant une densité maximale pour M. domestica. Pour le traitement expérimental, la pression de sélection due à Nasonia a été laissée libre d’opérer, alors que pour le cas témoin, les adultes de Musca étaient remplacés à chaque génération par des adultes provenant d’une population de Musca non exposée à Nasonia. L’évolution pour la résistance de Musca à Nasonia est apparue après quatre générations dans le traitement expérimental. Les changements éventuels mesurés chez la mouche ont été une augmentation du poids de la pupe (bien que la durée du développement larvaire ait été prévenue d’augmenter), une diminution de la durée du stade pupal, une augmentation de la mortalité pupale, et une réduction de la fécondité chez l’adulte. L’accroissement total par génération, des populations expérimentale et témoin de Nasonia, a subi une réduction marquée sur la population expérimentale de Musca par rapport à la population témoin de Musca. Cette baisse a été causée par une réduction à la fois de la longévité et du nombre de progénitures produites par jour chez les femelles de Nasonia. Durant les quelque 20 premières générations, aucune différence n’a été observée entre les deux traitements pour la densité de Musca. Par la suite, la densité de Musca a augmenté et a montré moins de fluctuations dans le cas expérimental que dans le cas témoin. Cette situation est demeurée inchangée jusqu’à la fin de l’expérience, après 50 générations.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abedi, Z. H. and Brown, A. W. A.. 1960. Development and reversion of DDT resistance in Aedes aegypti. Can. J. Genet. Cytol. 2: 252261.CrossRefGoogle Scholar
Al-Hafidh, R. A. 1962. Influence of natural selection and evolution on the population dynamics of parasite-host systems. Ph.D. Thesis, Cornell University, Ithaca, N.Y.Google Scholar
Aruga, H. and Watanabe, H.. 1964. Resistance per os infection with cytoplasmic-polyhedrosis virus in the silkworm, Bombyx mori L. J. Insect Path. 6: 387394.Google Scholar
Ayuzawa, C., Aratake, Y., and Kurata, K.. 1969. Studies of the effects of the cytoplasmic polyhedrosis virus of the pine caterpillar, Dendrimus (sic) spectabilis Butler, on the silkworm, Bombyx mori L. Bull. Sericul. Exp. Station (Japan) 23: 469497.Google Scholar
Chabora, P. C. 1967. The evolution and dynamics of laboratory populations of the wasp parasite, Nasonia vitripennis, and its blowfly host, Phaenicia sericata. Ph.D. Thesis, Cornell University, Ithaca, N.Y.Google Scholar
David, W. A. L. and Gardiner, B. O. C.. 1965. Resistance of Pieris brassicae L. to granulosis virus and the virulence of the virus from different host races. J. invert. Path. 7: 285290.CrossRefGoogle Scholar
DeBach, P. 1964. Biological Control of Insect Pests and Weeds. Reinhold, New York.Google Scholar
Huffaker, C. B. 1971. Biological Control. Plenum Press, New York.Google Scholar
Kulincevic, J. M. and Rothenbuhler, W. C.. 1975. Selection for resistance and susceptibility to hairless-black syndrome in the honeybee. J. invert. Path. 25: 289295.CrossRefGoogle ScholarPubMed
Madden, G. L. 1963. Ecological studies of the parasite, Nasonia vitripennis (Walk.), and the housefly host, Musca domestica Linn. Ph.D. Thesis, Cornell University, Ithaca, N.Y.Google Scholar
Martignoni, M. E. and Schmid, P.. 1961. Studies on the resistance to virus infections in natural populations of Lepidoptera. J. insect. Path. 3: 6274.Google Scholar
McEnroe, W. D. and Naegele, J. A.. 1968. The coadaptive process in an organophosphorus-resistant strain of the two-spotted spider mite, Tetranychus urticae. Ann. ent. Soc. Am. 61: 10551059.CrossRefGoogle Scholar
Muldrew, J. A. 1953. The natural immunity of the larch sawfly (Pristiphora erichsonii Htg.) to introduced parasite (Mesoleius tenthredinis Morley), in Manitoba and Saskatchewan. Can. J. Zool. 31: 313332.CrossRefGoogle Scholar
Nagel, W. P. 1962. The population dynamics of an experimental parasite-host system, with Nasonia vitripennis Walk. (Pteromalidae, Hymenoptera) as the parasite and Musca domestica L. (Muscidae, Diptera) as the host. Ph.D. Thesis, Cornell University, Ithaca, N.Y.Google Scholar
Olson, D. C. 1973. Evolution of resistance in a host population to an attacking parasite. Ph.D. Thesis, Cornell University, Ithaca, N.Y.Google Scholar
Olson, D. and Pimentel, D.. 1974. Evolution of resistance in a host population to attacking parasite. Environ. Ent. 3(4): 621624.CrossRefGoogle Scholar
Pimentel, D. 1968. Population regulation and genetic feedback. Science 159: 14321437.CrossRefGoogle ScholarPubMed
Pimentel, D. and Al-Hafidh, R.. 1965. Ecological control of a parasite population by genetic evolution in the parasite-host system. Ann. ent. Soc. Am. 58: 16.CrossRefGoogle ScholarPubMed
Pimentel, D., Nagel, W. P., and Madden, J. L.. 1963. Space-time structure of the environment and the survival of parasite-host systems. Am. Nat. 97: 141167.CrossRefGoogle Scholar
Pimentel, D., Levin, S. A., and Olson, D.. 1978. Coevolution and the stability of exploiter-victim systems. Am. Nat. 112: 119125.CrossRefGoogle Scholar
Ricklefs, R. 1973. Ecology. Thomas Nelson, London.Google Scholar
Rivers, C. F. 1959. Virus resistance in larvae of Pieris brassica L. pp. 205210 in Trans. First. int. Conf. Insect Path. Biol. Control, Prague.Google Scholar
Rosenzweig, M. L. 1977. Aspects of biological exploitation. 2. Rev. Biol. 52: 371380.CrossRefGoogle Scholar
Sidor, C. 1959. Susceptibility of larvae of the large white butterfly (Pieris brassica L.) to two virus diseases. Ann. appl. Biol. 47: 109113.CrossRefGoogle Scholar
Stone, F. D. 1969. Population studies of housefly Musca domestica L. and blowfly Phaenicia sericata (Meigen) and parasitic wasp Nasonia vitripennis (Walker). M.Sc. Thesis, Cornell University, Ithaca, N. Y.Google Scholar
Takahashi, F. 1963. Changes in some ecological characters of the almond moth caused by the selective action of an ichneumon wasp in their interacting system. Researches Popul. Ecol. Kyoto Univ. 5: 117129.Google Scholar
Turnock, W. J. 1970. In discussion, Pimentel, D. and Soans, A. B.. 1970. Animal populations regulated to carrying capacity of plant host by genetic feedback. pp. 313326 in Proc. Adv. Study Inst. Dynam. Numbers in Popul. (Oosterbeek).Google Scholar
Utida, S. 1957. Population fluctuation, an experimental and theoretical approach. Cold Spring Harbor Symp. Quant. Biol. 22: 139151.CrossRefGoogle Scholar
Watanabe, H. 1966. Relative virulence of polyhedrosis viruses and host-resistance in the silkworm, Bombyx mori L. Appl. Ent. Zool. 1: 139144.CrossRefGoogle Scholar
Watanabe, H. 1967. Development of resistance in the silkworm Bombys mori L. to peroral infection of a cytoplasmic-polyhedrosis virus. J. invert. Path. 9: 474479.CrossRefGoogle Scholar