Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T06:14:25.708Z Has data issue: false hasContentIssue false

ENVIRONMENTAL, PHYSICAL, AND BEHAVIOURAL DETERMINANTS OF BODY TEMPERATURE IN GRASSHOPPER NYMPHS (ORTHOPTERA: ACRIDIDAE)

Published online by Cambridge University Press:  31 May 2012

Derek J. Lactin
Affiliation:
The University of Lethbridge, Lethbridge, Alberta, Canada
Dan L. Johnson*
Affiliation:
The University of Lethbridge, Lethbridge, Alberta, Canada, and Land Resource Sciences Section, Research Centre, Agriculture and Agri-Food Canada, Box 3000, Lethbridge, Alberta, Canada T1J 4B1
*
1 Author to whom all correspondence should be sent.

Abstract

We describe a model which estimates grasshopper body temperature (Tb) by linking energy-flow equations with empirical descriptions of aboveground gradients of air temperature (Ta) and wind speed. The model was tested using restrained grasshopper nymphs; estimated and observed Tb agreed well (r2 > 0.81). At a rangeland site near Lethbridge, Alberta, Canada (49 °42′N, 112 °48′W), we observed 315 free-living grasshoppers. We recorded the shadow each cast on a horizontal surface, then reconstructed their orientation to the sun by geometric analysis. We used the model to estimate their Tb and the range and frequency of possible Tb within their environment. Modelled Tb exceeded Ta, and was generally lower than the modelled maximum possible Tb, but was well correlated with Tb of insects on top of the dense layer of vegetation which pervaded the site. This observation suggests that behaviours which elevate Tb are constrained by environmental barriers. Tb exceeded the value expected if insects were located and oriented randomly within their environment (mean difference = 3.95 °C, SE = 0.115); this is unequivocal evidence for behavioural thermoregulation. Heuristic simulations using temperature-dependent developmental- and feeding-rate equations for Melanoplus sanguinipes (Fabricius) suggest that thermoregulatory behaviour increased these rates by 30–40% compared with those for insects located and oriented randomly within their environment. During this study, population processes were never inhibited by excess heat; therefore any climatic warming at the experimental site will probably accelerate the phenology of these grasshopper species. Effects at other sites may differ; the model can be applied to test this possibility.

Résumé

Le modèle proposé ici permet d’estimer la température du corps des criquets (Tb) en reliant des équations basées sur le flux énergétique à des descriptions empiriques des gradients de la température de l’air (Ta) et de la vitesse du vent. Le modèle a été testé sur des larves de criquets limitées dans leurs mouvements; les températures Tb estimée et réelle étaient semblables (r2 > 0,81). A un site situé près de Lethbridge, Canada (49 ° 42′N, 112 ° 48′O), nous avons observé 315 criquets en liberté. Nous avons noté l’ombre de chacun sur une surface horizontale, ensuite avons déterminé son orientation par rapport au soleil au moyen d’une analyse géomégrique. Nous avons utilisé le modèle pour estimer la température Tb des criquets, de même que l’étendue et la fréquence des températures Tb possibles dans ce milieu. La température Tb estimée d’après le modèle était supérieure à la température Ta, et était généralement inférieure à la température Tb maximale possible d’après le modèle, mais était en forte corrélation avec la température Tb des insectes sur l’épaisse couche de végétation présente dans leur milieu. Cette constatation semble indiquer que les comportements qui peuvent élever la température Tb sont limités par des barrières environnementales. La température Tb enregistrée dépasse la valeur théorique prédite si on assume que les insectes se situent et s’orientent au hasard dans leur milieu (différence moyenne = 3,95 °C, erreur type = 0,115); il s’agit là d’une preuve certaine du contrôle comportemental de la température chez ces criquets. Des simulations heuristiques basées sur des équations décrivant le taux de développement et le taux d’alimentation en fonction de la température chez Melanoplus sanguinipes indiquent que le comportement thermorégulateur augmente ces taux de 30 à 40% par rapport à ceux enregistrés chez des insectes qui se positionnent et s’orientent au hasard dans leur milieu. Au cours de l’étude, la dynamique des populations n’a jamais été inhibée par une température excessive; tout réchauffement climatique au site expérimental résultera probablement en une accélération de la phénologie de ces espèces de criquets. Les résultats peuvent différer à d’autres endroits; le modèle peut servir à tester cette possibilité. [Traduit par le Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.V., Tracy, C.R., and Abramsky, Z.. 1979. Habitat selection in two species of short-horned grasshoppers. The role of thermal and hydric stresses. Oecologia (Berlin) 38: 359374.CrossRefGoogle ScholarPubMed
Bartlett, P.N, and Gates, D.M.. 1967. The energy budget of a lizard on a tree trunk. Ecology 48: 315322.CrossRefGoogle Scholar
Bligh, J., and Johnson, K.G.. 1973. Glossary of terms for thermal physiology. Journal of Applied Physiology 35: 941961.CrossRefGoogle ScholarPubMed
Campbell, G.S. 1977. An introduction to environmental biophysics. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Carruthers, R.I., Larkin, T.S., Firstencel, H., and Feng, Z.. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73: 190204.CrossRefGoogle Scholar
Chapman, R.F. 1955. The behaviour of nymphs of Schistocerca gregaria (Forskål) (Orthoptera: Acrididae) in a temperature gradient, with special reference to temperature preference. Behaviour 24: 285317.Google Scholar
Cowles, R.B., and Bogert, C.M.. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History 83: 265296.Google Scholar
deJong, J.B.R.M. 1980. Een karakterisering van de zonnestraling in Nederland. Ph.D. thesis, Technische Hogeschool (Technical University), Eindhoven, The Netherlands.Google Scholar
Edney, E.B. 1971. The body temperature of tenebrionid beetles in the Namib desert of southern Africa. Journal of Experimental Biology 55: 253272.CrossRefGoogle Scholar
Hadley, N.F. 1970. Micrometeorology and energy exchange in two desert arthropods. Ecology 51: 434444.CrossRefGoogle Scholar
Heath, J.E. 1964. Reptilian thermoregulation: evaluation of field studies. Science (Washington, D.C.) 146: 784785.CrossRefGoogle ScholarPubMed
Heinrich, B. 1977. Why have some animals evolved to regulate a high body temperature? American Naturalist 111: 623640.CrossRefGoogle Scholar
Heinrich, B. 1993. The hot-blooded insects. Strategies and mechanisms of thermoregulation. Harvard University Press, Cambridge, MA.Google Scholar
Henwood, K. 1975. A field-tested thermoregulation model for two diurnal Namib Desert tenebrionids. Ecology 56: 13291342.CrossRefGoogle Scholar
Hertz, P.E., Huey, R.B., and Stevenson, R.D.. 1993. Evaluating temperature regulation by field active ectotherms: the fallacy of the inappropriate question. American Naturalist 142: 796818.CrossRefGoogle ScholarPubMed
Higgins, L.E., and Ezcurra, E.. 1996. A mathematical simulation of thermoregulatory behaviour in an orb-weaving spider. Functional Ecology 10: 322327.CrossRefGoogle Scholar
Hilbert, D.W., and Logan, J.A.. 1983. Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environmental Entomology 12: 15.CrossRefGoogle Scholar
Huey, R.B. 1991. Physiological consequences of habitat selection. American Naturalist (Supplement) 137: S91–S115.CrossRefGoogle Scholar
Kemp, W.P. 1986. Thermoregulation in three rangeland grasshopper species. The Canadian Entomologist 118: 335343.CrossRefGoogle Scholar
Kevan, P.G., Jensen, T.S., and Shorthouse, J.P.. 1982. Body temperatures and behavioral thermoregulation of high arctic woolly-bear caterpillars and pupae (Gynaephora rossii, Lymantriidae: Lepidoptera) and the importance of sunshine. Alpine and Arctic Research 14: 125136.CrossRefGoogle Scholar
Kowalski, G.J., and Mitchell, J.W.. 1976. Heat transfer from spheres in the naturally turbulent, outdoor environment. Journal of Heat Transfer 98: 649653.CrossRefGoogle Scholar
Lactin, D.J., and Holliday, N.J.. 1994. Behavioral responses of Colorado potato beetle larvae to combinations of temperature and insolation, under field conditions. Entomologia Experimentalis et Applicata 72: 255263.CrossRefGoogle Scholar
Lactin, D.J., and Johnson, D.L.. 1995. Temperature-dependent feeding rates of Melanoplus sanguinipes (Orthoptera: Acididae) nymphs in laboratory trials. Environmental Entomology 24: 12911296.CrossRefGoogle Scholar
Lactin, D.J., and Johnson, D.L.. 1996 a. Effects of insolation and body orientation on internal thoracic temperature of nymphal Melanoplus packardii (Scudder) (Orthoptera: Acrididae). Environmental Entomology 25: 423429.CrossRefGoogle Scholar
Lactin, D.J., and Johnson, D.L.. 1996 b. Behavioural optimization of body temperature by nymphal grasshoppers (Melanoplus sanguinipes, Orthoptera: Acrididae) in temperature gradients established using incandescent bulbs. Journal of Thermal Biology 21: 231238.CrossRefGoogle Scholar
Lactin, D.J., and Johnson, D.L.. 1997. Response of body temperature to solar radiation in restrained nymphal migratory grasshoppers (Orthoptera: Acrididae): influences of orientation and body size. Physiological Entomology 22: 131139.CrossRefGoogle Scholar
Lactin, D.J., and Johnson, D.L.. 1998. Convective heat loss and change in body temperature of grasshopper and locust nymphs: relative importance of wind speed, insect size and insect orientation. Journal of Thermal Biology 23: 513.CrossRefGoogle Scholar
Lactin, D.J., Holliday, N.J., Johnson, D.L., and Craigen, R.. 1995. Improved rate model of temperature-dependent development by arthropods. Environmental Entomology 24: 6875.CrossRefGoogle Scholar
Lactin, D.J., Harris, P., Johnson, D.L., Wan, F.-H., and Thomas, G.. 1997. Modelling and mapping geographic ranges to evaluate weed biocontrol agents: a case study using Altica carduorum (Coleoptera: Chrysomelidae) and Cirsium arvense (Asteraceae). Biocontrol Science and Technology 7: 657670.CrossRefGoogle Scholar
Logan, J.A., Wollkind, D.J., Hoyt, S.C., and Tanigoshi, L.K.. 1976. An analytic model of temperature-dependent rate phenomena in arthropods. Environmental Entomology 5: 11331140.CrossRefGoogle Scholar
Monteith, J.L. 1974. Specification of the environment for thermal physiology. pp. 117in Monteith, J.L., and Mount, L.E. (Eds.), Heat Loss from Animals and Man. Assessment and Control. Butterworth and Co., London.Google Scholar
Porter, W.P., and Gates, D.M.. 1969. Thermodynamic equilibria of animals with environment. Ecological Monographs 39: 227244.CrossRefGoogle Scholar
Porter, W.P., Mitchell, J.W., Beckman, W.A., and DeWitt, C.B.. 1973. Behavioral implications of mechanistic ecology. Thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia (Berlin) 13: 154.CrossRefGoogle ScholarPubMed
Prange, H.D. 1990. Temperature regulation by respiratory evaporation in grasshoppers. Journal of Experimental Biology 154: 463474.CrossRefGoogle Scholar
Reichert, S.E., and Tracy, C.R.. 1975. Thermal balance and prey availability: bases for a model relating web-site characteristics to spider reproductive success. Ecology 56: 265284.CrossRefGoogle Scholar
Robertson, C.W., and Russelo, D.A.. 1969. Astrometeorological estimator for estimating time when sun is at any elevation, elapsed time between the same elevations in the morning and afternoon, and hourly and daily totals of solar energy, Q 0. Agriculture Canada Agricultural Meteorology Technical Bulletin 14: 122.Google Scholar
SAS Institute Inc. 1985. SAS user's guide, statistics, version 5 edition. SAS Institute Inc., Cary, NC.Google Scholar
Spitters, C.J.T., Toussaint, H.A.J.M., and Goudriaan, J.. 1986. Separating the diffuse and direct components of global radiation and its implications for modelling canopy photosynthesis. Part I. Components of incoming radiation. Journal of Agricultural and Forest Meteorology 38: 217229.CrossRefGoogle Scholar
Stevenson, R.D. 1985. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. American Naturalist 126: 362386.CrossRefGoogle Scholar
Stone, G.N., and Willmer, P.G.. 1989. Endothermy and temperature regulation in bees—a critique of grab and stab measurement of body temperatures. Journal of Experimental Biology 143: 211223.CrossRefGoogle Scholar
Uvarov, B.P. 1977. Grasshoppers and locusts. Vol. 2. Behaviour, ecology, biogeography, population dynamics. Centre For Overseas Pest Research, London.Google Scholar
Whitman, D.W. 1987. Thermoregulation and daily activity patterns in a black desert grasshopper, Taeniopoda eques. Animal Behavior 35: 18141826.CrossRefGoogle Scholar
Whitman, D.W. 1988. Function and evolution of thermoregulation in the desert grasshopper, Taeniopoda eques. Journal of Applied Ecology 57: 369383.CrossRefGoogle Scholar
Willms, W.D., McGinn, S.M., and Dormaar, J.F.. 1993. Influence of litter on herbage production in the Mixed Prairie. Journal of Range Management 46: 320324.CrossRefGoogle Scholar