Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T15:49:11.092Z Has data issue: false hasContentIssue false

EFFECTS OF PHOTOPERIOD AND TEMPERATURE ON CALLING BEHAVIOUR OF THE GYPSY MOTH, LYMANTRIA DISPAR L. (LEPIDOPTERA: LYMANTRIIDAE)

Published online by Cambridge University Press:  31 May 2012

R. P. Webster
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA 01003
C.-M. Yin*
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA 01003
*
2Author to whom all correspondence should be addressed.

Abstract

Female gypsy moth, Lymantria dispar (L.), exhibited a distinct calling rhythm at 17 °C, with peak calling ca. 4.0 h before the beginning of scotophase and minimal calling at or near the onset of the photophase (4.0 h). The rhythm persisted under continuous darkness (DD) and is thus circadian. The duration of calling in DD was shorter than that under a 16 h L: 8 h D photoperiodic regime. In contrast, under continuous light (LL) females called continuously and no overt rhythm was observed. Individuals kept under LL from the beginning of the pupal stage exhibited a distinct calling rhythm following a transfer to DD. The influence of temperature on the calling rhythm of L. dispar differed from most other species of moths studied to date. At lower temperature the onset of calling occurred later than at higher temperatures. The duration of the calling period increased from 11.1 h at 9 °C to continuous calling at 35 °C. The responses of females to temperature changes made at different times during the calling period suggest that the timing of calling in L. dispar does not depend on absolute temperature level.

Résumé

Les femelles de la Spongieuse, Lymantria dispar (L.), émettent des cris d’appel selon un rythme particulier à 17 C, la période la plus intense se produisant ca. 4,0 h avant le début de la scotophase, la période la moins intense, vers le début de la photophase (4,0 h). Le rythme se maintient dans des conditions d’obscurité continue et il s’agit donc d’un rythme circadien. La période des appels dure moins longtemps à l’obscurité continue (OO) que dans des conditions LO 16 : 8 de photopériode. En revanche, dans des conditions de lumière continue (LL), les femelles n’interrompent pas leurs appels et ne les émettent pas selon un rythme particulier. Les individus gardés à la lumière continue (LL) depuis le début du stade de chrysalide adoptent un rythme d’émission d’appels après leur transfert à des conditions OO. L’effet de la température sur le rythme des appels chez la Spongieuse diffère de celui qui a été constaté chez la plupart des autres espèces de papillons nocturnes étudiés à ce jour. A basse température, la période d’appel commence plus tard qu’à température plus élevée. La durée de la période des appels augmente de 11,1 h à 9 C jusqu’ à devenir continue à 35 C. La réaction des femelles aux changements de température à différents moments au cours de la période des appels indique que le moment choisi pour émettre des appels chez L. dispar ne dépend pas du niveau absolu de température.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, A.R., and Hammond, A.M. Jr., 1982. Temperature modification of female sex pheromone release in Trichoplusia ni (Hübner) and Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae). Environmental Entomolgy 11: 889892.CrossRefGoogle Scholar
Aschoff, J. 1979. Circadian rhythms—influence of internal and external factors on the period measured in constant conditions. Zeitschrift fur Tierpsychologie 49: 225249.CrossRefGoogle ScholarPubMed
Baker, T.C., and Cardé, R.T.. 1979. Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha molesta (Busck). Journal of Insect Physiology 25: 943950.CrossRefGoogle Scholar
Bell, R.A., Owens, C.D., Shapiro, M., and Tardif, J.G.R.. 1981. Development of mass rearing technology. pp. 599633in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. U.S. Department of Agriculture Technical Bulletin 1584.Google Scholar
Cardé, R.T.,Comeau, A., Baker, T.C., and Roelofs, W.L.. 1975. Moth mating periodicity: temperature regulates the circadian gate. Experientia 31: 4648.CrossRefGoogle ScholarPubMed
Castrovillo, P.J., and Cardé, R.T.. 1979. Environmental regulation of female calling and male pheromone response periodicities in the codling moth (Laspeyresia pomonella). Journal of Insect Physiology 25: 659667.CrossRefGoogle Scholar
Charlton, R.E., and Cardé, R.T.. 1982. Rate and diel periodicity of pheromone emission from female gypsy moths (Lymantria dispar) determined with a glass-adsorption system. Journal of Insect Physiology 28: 423430.CrossRefGoogle Scholar
Cusson, M., and McNeil, J.N.. 1989. Involvement of juvenile hormone in the regulation of pheromone release activities in a moth. Science (Washington, D.C.) 243: 210212.CrossRefGoogle Scholar
Delisle, J., and McNeil, J.N.. 1987. Calling behaviour and pheromone titre of the true armyworm Pseudaletia unipuncta (Haw.) (Lepidoptera: Noctuidae) under different temperature and photoperiodic conditions. Journal of Insect Physiology 33: 315324.CrossRefGoogle Scholar
Hirano, C., and Muramato, H.. 1976. Effect of age on mating activity of the sweet potato leaf roller, Brachima macroscopa (Lepidoptera: Gelechiidae). Applied Entomology and Zoology 11: 154159.CrossRefGoogle Scholar
Hollander, A.L., and Yin, C.-M.. 1982. Neurological influences on pheromone release and calling behaviour in the gypsy moth, Lymantria dispar. Physiological Entomology 7: 163166.CrossRefGoogle Scholar
Hollander, A.L., and Yin, C.-M.. 1985. Lack of humoral control in calling and pheromone release by brain, corpora cardiaca, corpora allata and ovaries ot the female gypsy moth, Lymantria dispar L. Journal of Insect Physiology 31: 151163.CrossRefGoogle Scholar
Itagaki, H., and Conner, W.E.. 1986. Physiological control of pheromone release behaviour in Manducta sexta (L.) Journal of Insect Physiology 32: 657664.CrossRefGoogle Scholar
Hollander, A.L., and Yin, C.-M.. 1987. Neural control of rhythmic pheromone gland exposure in Utetheisa ornatrix (Lepidoptera: Arctiidae). Journal of Insect Physiology 33: 177181.Google Scholar
Kanno, H. 1979. Effects of age on calling behaviours of the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Bulletin of Entomological Research 69: 331335.CrossRefGoogle Scholar
Lee, C., Parikh, V., Itshkaichi, T., Bae, K., and Edery, I.. 1996. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science (Washington, D.C.) 217: 17401744.CrossRefGoogle Scholar
Linn, C.E. Jr., and Roelofs, W.L.. 1993. Levels of biogenic amines and peptides in individual corn earworm moths, Helicoverpa zea, using high performance liquid chromatography with electrochemical detection. Insect Biochemistry and Molecular Biology 23: 367373.CrossRefGoogle ScholarPubMed
McNeil, J.N. 1991. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annual Review of Entomology 36: 407430.CrossRefGoogle Scholar
Miller, R.G. Jr., 1981. Simultaneous Statistical Inference. Springer-Verlag, New York.CrossRefGoogle Scholar
Myers, M.P., Wager-Smith, K., Rothenfluh-Hilfiker, A., and Young, M.W.. 1996. Light-induced degredation of TIMELESS and entrainment of the Drosophila circadian clock. Science (Washington, D.C.) 271: 17361740.CrossRefGoogle Scholar
Pittendrigh, C.S. 1966. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Zeitschrift fur Pflanzenphysiologie 54: 275307.Google Scholar
Sanders, C.J., and Lucuik, G.S.. 1972. Factors affecting calling by eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 104: 17511762.CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS User's Guide: Statistics, Version 5 Edition. SAS Institue Inc., Cary, N.C.Google Scholar
Sasaki, M., Riddiford, L.M., Truman, J.W., and Moore, J.K.. 1983. Re-evaluation of the role of the corpora cardiaca in calling and oviposition behaviour of giant silk moths. Journal of Insect Physiology 29: 695705.CrossRefGoogle Scholar
Schal, C., and Cardé, R.T.. 1986. Effects of temperature and light on calling in the tiger moth Holomelina lamae (Freeman) (Lepidoptera: Arctiidae). Physiological Entomology 11: 7587.CrossRefGoogle Scholar
Smith, P.H. 1983. Circadian control of spontaneous flight activity in the blowfly, Lucilia cuprina. Physiological Entomology 8: 7382.Google Scholar
Sower, L.L., Shorey, H.H., and Gaston, L.K.. 1971. Sex pheromones of noctuid moths. XXV. Effects of temperature and photoperiod on circadian rhythms of sex pheromone release by females of Trichoplusia ni. Annals of the Entomological Society of America 64: 488492.CrossRefGoogle Scholar
Swier, S.R., Rings, R.W., and Musick, G.L.. 1977. Age related calling behavior of the black cutworm, Agrotis ipsilon. Annals of the Entomological Society of America 70: 919924.CrossRefGoogle Scholar
Tang, J.D., Charlton, R.E., Cardé, R.T., and Yin, C.-M.. 1987. Effect of allatectomy and ventral nerve cord transection on calling, pheromone emission and pheromone production in Lymantria dispar. Journal of Insect Physiology 33: 469476.CrossRefGoogle Scholar
Turgeon, J., and McNeil, J.N.. 1982. Calling behaviour of the armyworm, Pseudaletia unipuncta. Entomologica Experimentalis et Applicata 31: 402408.CrossRefGoogle Scholar
Turgeon, J., and McNeil, J.N.. 1983. Modification in the calling behaviour of Pseudaletia unipuncta (Lepidoptera: Noctuidae), induced by temperature conditions during pupal and adult development. The Canadian Entomologist 115: 10151022.CrossRefGoogle Scholar
Webster, R.P. 1988. Modulation of the expression of calling by temperature in the omnivorous leafroller moth, Platynota stultana (Lepidoptera: Tortricidae), and other moths: An hypothesis. Annals of the Entomological Society of America 81: 136151.CrossRefGoogle Scholar
Webster, R.P., and Cardé, R.T.. 1982. Relationship among pheromone titre, calling and age in the omnivorous leafroller moth (Platynota stultana). Journal of Insect Physiology 28: 925933.CrossRefGoogle Scholar
Webster, R.P., and Conner, W.E.. 1986. Effects of temperature, photoperiod, and light intensity on the calling rhythm in arctiid moths. Entomologia Experimentalis et Applicata 40: 239245.CrossRefGoogle Scholar