Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T02:08:38.371Z Has data issue: false hasContentIssue false

EFFECTS OF ELEVATION ON THE RATE OF DEVELOPMENT OF WESTERN SPRUCE BUDWORM (LEPIDOPTERA: TORTRICIDAE) IN BRITISH COLUMBIA

Published online by Cambridge University Press:  31 May 2012

A. J. Thomson
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5
J. W. E. Harris
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5
R. H. Silversides
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5
R. F. Shepherd
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5

Abstract

A simple empirical model of temperature variation with elevation was successfully used to explain variation in observed rates of development of larvae and pupae of the western spruce budworm in mountainous terrain. Hopkins' Bioclimatic Law did not adequately describe development of stages earlier than the sixth instar. Regional differences in the effect of elevation are demonstrated and related to coastal and interior conditions. Direct solar heating effects appear to be of major significance in the early instars. The empirically-derived rates of temperature decrease could be generally applied to regions with dry inland conditions, but not to moist coastal regions.

Résumé

Un simple modèle empirique de la variation de la température selon l'altitude a permis d'expliquer les variations observées de la vitesse de croissance chez les larves et les chrysalides de la tordeuse occidentale de l'épinette en terrain montagneux. La loi de Hopkins était insatisfaisante pour les stades antérieurs au sixième. Des différences régionales de l'effet de l'altitude ont été mises en évidence et corrélées à des régimes continental et maritime. Les effets du réchauffement direct par le soleil semblent de la plus haute importance pour les premiers stades larvaires. Les gradients de refroidissement obtenus de façon empirique étaient généralement valables pour les régions à régime continental sec, mais non pour celles à régime maritime humide.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, R. G. 1981. Mountain Weather and Climate. Methuen, London. 313 + vii pp.Google Scholar
Baskerville, G. L. and Emin, P.. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50: 514517.CrossRefGoogle Scholar
Bean, F. L. and Wilson, L. F.. 1964. Comparing various methods of predicting development of the spruce budworm, Choristoneura fumiferana in northern Minnesota. J. econ. Ent. 57: 925928.CrossRefGoogle Scholar
Cameron, D. G., McDougall, G. A., and Bennett, C. W.. 1968. Relation of spruce budworm development and balsam fir shoot growth to heat units. J. econ. Ent. 61: 857858.CrossRefGoogle Scholar
Cramer, O. P. 1961. Adjustment of relative humidity and temperature for differences in elevation. U.S. Dep. Agric. Forest Serv., Pacif. NWest Forest and Range Exp. Stn Res. Pap. 43.Google Scholar
Hopkins, A. D. 1920. The Bioclimatic Law. J. Wash. Acad. Sci. 10: 3440.Google Scholar
McCutchan, M. H., Fox, D. G., and Furman, R. W.. 1981. Th conical mountain study — Determining the effect of elevation and aspect in Proc. 2nd Conf. on mountain meteorology, Steamboat Springs, Colo. Nov. 9–12, 1981.Google Scholar
McMorran, A. 1973. Effects of pre-storage treatment on survival of diapausing larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 105: 10051009.CrossRefGoogle Scholar
Miller, C.. A., Eidt, D. C., and McDougall, G. A.. 1971. Predicting spruce budworm development. Can. For. Serv. Bi-mon. Res. Notes 27: 3334.Google Scholar
Peterson, E. B. 1969. Radiosonde data for characterization of a mountain environment in British Columbia. Ecology 50: 200205.CrossRefGoogle Scholar
Thomson, A. J. and Moncrieff, S. M.. 1982. Prediction of bud burst in Douglas-fir by degree-day accumulation. Can. J. For. Res. 12: 448452.CrossRefGoogle Scholar
Wagg, J. W. B. 1958. Environmental factors affecting spruce budworm growth. Res. Bull. 11. Forest Lands Research Center, Corvallis, Oregon.Google Scholar
Wellington, W. G. 1948. Measurements of the physical environment. Bi-mon. Prog. Rep. For. Insect Invest. Dep. Agric. Con. 4(5): 12.Google Scholar