Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T06:48:53.820Z Has data issue: false hasContentIssue false

Effects of body size and prey quality on the reproductive attributes of two aphidophagous Coccinellidae (Coleoptera) species

Published online by Cambridge University Press:  02 August 2013

Mahadev Bista
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 001, India
Omkar*
Affiliation:
Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226 001, India
*
1Corresponding author (e-mail: [email protected]).

Abstract

In the present study, effects of body size and prey quality on reproductive attributes and longevity of two aphidophagous Coccinellidae (Coleoptera), Coccinella septempunctata (Linnaeus) and Coccinella transversalis Fabricius, have been investigated in laboratory conditions. Higher fecundity, egg fertility, and longevity were obtained in larger females of C. septempunctata on pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), and in C. transversalis on bean aphid, Aphis craccivora Koch (Hemiptera: Aphididae). Males of C. septempunctata survived longer than those of C. transversalis on both prey. Number of clutches was lower and clutch size was higher in early and late reproductive phase; the reverse was observed in the middle of the reproductive phase. Larger females of C. septempunctata and C. transversalis laid higher number of clutches than the smaller ones. Thus, both body size and prey quality affect reproductive performance in Coccinellidae, though size variation did not change the prey preference.

Résumé

Dans notre étude, nous examinons les effets de la taille corporelle et de la qualité des proies sur les caractéristiques reproductives et la longévité chez deux Coccinellidae (Coleoptera) aphidophages, Coccinella septempunctata (Linnaeus) et Coccinella transversalis (Fabricius), dans des conditions de laboratoire. On observe une fécondité, une fertilité des œufs et une longévité plus élevées chez les femelles de plus grande taille de C. septempunctata nourries de pucerons du pois, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), et de C. transversalis nourries de pucerons de la gourgane, Aphis craccivora Koch (Hemiptera: Aphididae). Les mâles de C. septempunctata survivent plus longtemps que ceux de C. transversalis lorsqu'alimentés des deux proies. Le nombre de pontes est plus petit et la taille des pontes plus grande tôt et tard durant la phase areproductive et l'inverse se produit au milieu de la phase reproductive. Les femelles plus grandes de C. septempunctata et de C. transversalis déposent un plus grand nombre de pontes que les femelles plus petites. Ainsi, la taille corporelle et la qualité des proies affectent la performance reproductive chez les Coccinellidae, bien que la variation de la taille ne modifie pas la préférence des proies.

Type
Insect Management
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Barbara Ekbom

References

Alcock, J. 1993. Animal behaviour: an evolutionary approach. Sinauer, Sunderland, Massachusetts, United States of America.Google Scholar
Avila, F.W., Sirot, L.K., LaFlamme, B.A., Rubinstein, C.D., Wolfner, M.F. 2011. Insect seminal fluid proteins: identification and function. Annual Review of Entomology, 56: 2140.CrossRefGoogle ScholarPubMed
Berger, D., Walters, R., Gotthard, K. 2008. What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology, 22: 523529.CrossRefGoogle Scholar
Bilde, T.Toft, S. 2001. The value of three cereal aphid species as food for a generalist predator. Physiological Entomology, 26: 5868.CrossRefGoogle Scholar
Bisazza, B. 1993. Male competition, female mate choice and sexual size diamorphism in Poecilid fishes. In Behavioural ecology of fishes. Edited by F.A. Huntingford and P. Torricelli. Harwood Academic Press, Chur, Switzerland. Pp. 257286.Google Scholar
Bissoondath, C.J.Wiklund, C. 1996. Effect of male mating history and body size on ejaculate size and quality in two polyanderous butterflies, Pieris napi and Pieris rapae (Lepidoptera: Pieridae). Functional Ecology, 10: 457464.CrossRefGoogle Scholar
Blackman, R.L. 1967. The effects of different aphid foods on Adalia bipunctata L. and Coccinella 7-punctata L. Annals of Applied Biology, 59: 207219.CrossRefGoogle Scholar
Blanckenhorn, W.U. 1998. Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution, 52: 13941407.CrossRefGoogle ScholarPubMed
Blanckenhorn, W.U. 2000. The evolution of body size: what keeps organisms small? The Quarterly Review of Biology, 75: 385407.CrossRefGoogle ScholarPubMed
Boggs, C.L. 1997. Reproductive allocation from reserves and income in butterfly species with differing adult diets. Ecology, 78: 181191.CrossRefGoogle Scholar
Bonduriansky, R. 2001. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biological Reviews of the Cambridge Philosophical Society, 76: 305339.CrossRefGoogle Scholar
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B. 2004. Toward a metabolic theory of ecology. Ecology, 85: 17711789.CrossRefGoogle Scholar
Bunger, L., Lewis, R.M., Rothschild, M.F., Blasco, A., Renne, U., Simm, G. 2005. Relationships between quantative and reproductive fitness traits in animals. Philosophical Transactions of the Royal Society, 360: 14891502.CrossRefGoogle Scholar
Cox, R.M., Butler, M., John-Alder, H.B. 2007. The evolution of sexual size dimorphism in reptiles. In Sex, size and gender roles: Evolutionary studies of sexual size dimorphism. Edited by D.J. Fairbairn, W.U. Blanckenhorn and T. Szekely. Oxford University Press, Oxford, United Kingdom. Pp. 3849.CrossRefGoogle Scholar
Darwin, C. 1874. The descent of man, and selection in relation to sex. Appleton, New York, United States of America.Google Scholar
Debaraj, Y.Singh, T.K. 1990. Biology of an aphidophagous coccinellid predator, Coccinella transversalis Fab. Journal of Biological Control, 4: 9395.Google Scholar
De Roos, A.M., Persson, L., Mccauley, E. 2003. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecology Letters, 6: 473487.CrossRefGoogle Scholar
Dixon, A.F.G. 2000. Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Dixon, A.F.G. 2007. Body size and resource partitioning in ladybirds. Population ecology, 49: 4550.CrossRefGoogle Scholar
Dixon, A.F.G.Agarwala, B.K. 2002. Triangular fecundity function and ageing in ladybird beetles. Ecological Entomology, 27: 433440.CrossRefGoogle Scholar
Donoso, D.P.Tregenza, T. 2011. Fecundity selection and the evolution of reproductive output and sex-specific body size in the Liolaemus lizard adaptive radiation. Evolutionary Biology, 38: 197207.CrossRefGoogle Scholar
Fernando, L.C.P.Walter, G.H. 1999. Activity patterns and oviposition rates of Aphytis lignanensis females, a parasitoid of California red scale Aonidiella aurantii: implications for successful biological control. Ecological Entomology, 24: 416425.CrossRefGoogle Scholar
Ferrer, A., Dixon, A.F.G., Hemptinne, J.L. 2008. Prey preference of ladybird larvae and its impact on larval mortality, some life history traits of adults and female fitness. Bulletin of Insectology, 61: 510.Google Scholar
Filin, I.Ovadia, O. 2007. Individual size variation and population stability in a seasonal environment: a discrete-time model and its calibration using grasshoppers. American Naturalist, 170: 719733.CrossRefGoogle Scholar
Forsman, A. 2001. Clutch size versus clutch interval: life history strategies in the colour-polymorphic pygmy grasshopper Tetrix subulata. Oecologia, 129: 357366.CrossRefGoogle ScholarPubMed
García-Barros, E. 2000. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidae, Hesperiodea). Biological Journal of the Linnean Society, 70: 251284.CrossRefGoogle Scholar
Hanin, O., Azrielli, A., Zakin, V., Applebaum, S., Rafaeli, A. 2011. Identification and differential expression of a sex-peptide receptor in Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 41: 537544.CrossRefGoogle ScholarPubMed
Helinski, M.E.H.Harrington, L.C. 2011. Male mating history and body size influence female fecundity and longevity of the dengue vector Aedes aegypti. Journal of Medical Entomology, 48: 202211.CrossRefGoogle ScholarPubMed
Hodek, I. 1962. Essential and alternative food in insects. In Transactions of the XIth International Congress of Entomology. Edited by H. Strouhal and M. Beier. Organisationskomittee des XI Internationalen Kongress für Entomologie, Vienna, Austria. Pp. 697698.Google Scholar
Hodek, I.Honěk, A. 1996. Ecology of Coccinellidae. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Hoefler, C.D. 2007. Male mate choice and size-assortative pairing in a jumping spider, Phidippus clarus. Animal Behaviour, 73: 943954.CrossRefGoogle Scholar
Howard, R.D.Kluge, A.G. 1985. Proximate mechanisms of sexual selection in wood frogs. Evolution, 39: 260277.CrossRefGoogle ScholarPubMed
Hunt, J.Simmons, L.W. 2000. Maternal and paternal effects on offspring phenotype in the dung beetle Onthophagus taurus. Evolution, 54: 936941.Google ScholarPubMed
Kajita, Y.Evans, E.W. 2010. Relationships of body size, fecundity, and invasion success among predatory lady beetles (Coleoptera: Coccinellidae) inhabiting alfalfa fields. Annals of the Entomological Society of America, 103: 750756.CrossRefGoogle Scholar
Kalushkov, P.Hodek, I. 2004. The effect of thirteen species of aphids on some life history parameters of the ladybird Coccinella septempunctata. Biocontrol, 49: 2132.CrossRefGoogle Scholar
Kindlmann, P., Dixon, A.F.G., Dostalkova, I. 2001. Role of ageing and temperature in shaping reaction norms and fecundity functions in insects. Journal of Evolutionary Biology, 14: 835840.CrossRefGoogle Scholar
Losos, J.B. 2009. Lizards in an evolutionary tree. Ecology and adaptive radiation of anoles. University of California Press, Berkeley, California, United States of America.Google Scholar
Malcolm, S.B. 1992. Prey defence and predator foraging. In Natural enemies: the population biology of predators, parasites and diseases . Edited by M.J. Crawley. Blackwell, Oxford, United Kingdom. Pp. 458475.CrossRefGoogle Scholar
Michaud, J.P. 2005. On the assessment of prey suitability in aphidophagous Coccinellidae. European Journal of Entomology, 102: 385390.CrossRefGoogle Scholar
Mills, N.J. 1981. Some aspects of the rate of increase of a coccinellid. Ecological Entomology, 6: 293299.CrossRefGoogle Scholar
Mishra, G., Kumar, B., Shahid, M., Singh, D., Omkar, 2011. Evaluation of four co-occurring ladybirds for use as biocontrol agents of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Biocontrol Science and Technology, 21: 991997.CrossRefGoogle Scholar
Omkar and Afaq, U. 2012. Evaluation of Darwin's fecundity advantage hypothesis in Parthenium beetle, Zygogramma bicolorata Pallister. Insect Sciences. doi:10.1111/j.1744-7917.2012.01510.x.CrossRefGoogle Scholar
Omkar, James, B.E. 2004. Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalis Fabricius (Col., Coccinellidae). Journal of Applied Entomology, 128: 150157.CrossRefGoogle Scholar
Omkar, , Kumar, G., Sahu, J. 2009. Performance of a predatory ladybird beetle, Anegleis cardoni (Coleoptera: Coccinellidae) on three aphid species. European Journal of Entomology, 106: 565572.CrossRefGoogle Scholar
Omkar, Mishra, G. 2005. Preference-performance of a generalist predatory ladybird: a laboratory study. Biological Control, 34: 187195.CrossRefGoogle Scholar
Omkar, , Mishra, G., Srivastava, S., Gupta, A.K., Singh, S.K. 2005a. Reproductive performance of four aphidophagous ladybirds on cowpea aphid, Aphis craccivora Koch. Journal of Applied Entomology (Berlin), 129: 217220.CrossRefGoogle Scholar
Omkar, , Pervez, A., Mishra, G., Srivastava, S., Singh, S.K., Gupta, A.K. 2005b. Intrinsic advantages of a ladybird, Cheilomenes sexmaculata over the relatively bigger two co-occurring Coccinella species. Insect Science, 12: 179184.CrossRefGoogle Scholar
Omkar, , Singh, S.K., Pervez, A., Mishra, G. 2004. Age-specific fecundity and natality life-table of an aphidophagous ladybird, Cheilomenes sexmaculata. Biological Memoirs, 30: 2025.Google Scholar
Omkar, Srivastava, S. 2003. Influence of six aphid prey species on development and reproduction of a ladybird beetle, Coccinella septempunctata. BioControl, 48: 379393.CrossRefGoogle Scholar
Perry, J.C.Rowe, L. 2008. Ingested spermatophores accelerate reproduction and increase mating resistance but are not a source of sexual conflict. Animal Behaviour, 76: 9931000.CrossRefGoogle Scholar
Pervez, A.Omkar, 2004. Prey dependent life attributes of an aphidophagous ladybird beetle, Propylea dissecta (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 14: 385396.CrossRefGoogle Scholar
Pervez, A., Omkar, Richmond, A.S. 2004. The influence of age on reproductive performance of a predatory ladybird beetle, Propylea dissecta. Journal of Insect Sciences, 4: 18.CrossRefGoogle ScholarPubMed
Rana, J.S., Dixon, A.F.G., Jarosik, V. 2002. Costs and benefits of prey specialization in a generalist insect predator. Journal of Animal Ecology, 71: 1522.CrossRefGoogle Scholar
Roff, D.A. 1992. The evolution of life histories: theory and analysis. Chapman and Hall, New York, United States of America.Google Scholar
Saeki, Y., Kruse, K.C., Switzer, P.V. 2005. Male preference for larger females and female reproductive condition in the Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae). Journal of the Kansas Entomological Society, 78: 1319.CrossRefGoogle Scholar
Salavert, V., Zamora-Munoz, C., Ruizrodriguez, M., Soler, J.J. 2011. Female-biased size dimorphism in a diapausing caddisfly, Mesophylax aspersus: effect of fecundity and natural and sexual selection. Ecological Entomology, 36: 389395.CrossRefGoogle Scholar
Shine, R. 2005. Life-history evolution in reptiles. Annual Reviews of Ecology, Evolution and Systematics, 36: 2346.CrossRefGoogle Scholar
Sloggett, J.J. 2008. Weighty matters: body size, diet and specialization in aphidophagous ladybird beetles (Coleoptera: Coccinellidae). European Journal of Entomology, 105: 381389.CrossRefGoogle Scholar
Stewart, L.A., Hemptinne, J.L., Dixon, A.F.G. 1991. Reproductive tactics of ladybird beetles: relationships between egg size, ovariole number and developmental time. Functional Ecology, 5: 380385.CrossRefGoogle Scholar
Thornhill, R.Alcock, J. 1983. The evolution of insect mating systems. Harvard University Press, Cambridge, Massachusetts, United States of America.CrossRefGoogle Scholar
Wicklund, C.Karlsson, B. 1988. Sexual size dimorphism in relation to fecundity in some Swedish satyrid butterflies. American Naturalist, 131: 132138.CrossRefGoogle Scholar
Yadav, A., Wang, Q., He, X.Z. 2010. Effect of body weight on reproductive performance of Micromus tasmaniae (Walker) (Neuroptera: Hemerobiidae). Insect Biology, 63: 208213.Google Scholar