Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T02:01:41.506Z Has data issue: false hasContentIssue false

EFFECTIVENESS OF STEINERNEMATID AND HETERORHABDITID NEMATODES AGAINST NOCTUID, PYRALID, AND GEOMETRID SPECIES IN SOIL1

Published online by Cambridge University Press:  31 May 2012

O.N. Morris
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
V. Converse
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Larvae of one pyralid, five noctuid, and one geometrid species were exposed to six species/strains of steinernematid and two species of heterorhabditid nematodes applied to soil surface in the laboratory. The most parasitic nematodes were Steinernema bibionis Bovien for the wax moth (Galleria mellonella L.) and the bertha armyworm (Mamestra configurata Wlk.), Heterorhabditis heliothidis (Khan, Brooks, and Hirschmann) for the cereal armyworm [Pseudaletia unipuncta (Haw)], S. feltiae Filipjev Mexican for the variegated cutworm [Peridroma saucia (Hbn.)], and S. feltiae All for the red-backed cutworm [Euxoa ochrogaster (Gwen)] and the spring cankerworm [Paleacrita vernata (Peck.)]. When both LD50 values and rates of parasitism of the hosts were considered together, the most promising nematode for soil applications was S. feltiae against the bertha armyworm.

Résumé

Des larves d’une espèce de pyrale, de cinq espèces de noctuelles et d’une espèce de géomètre ont été exposées à six espèces/lignées de nématodes steinernématoïdes et à deux espèces de nématodes hétérorhabtidoïdes placées à la surface du soil au laboratoire. Les nématodes les plus parasitiques ont été comme suit : Steinernema bibionis Bovien pour la fausse teigne de la cire (Galleria mellonella L.) et pour la légionnaire bertha (Mamestra configurata Wlk.); Heterorhabditis helothidis (Khan, Brooks et Hirschmann) pour la légionnaire des céréales [Pseudaletia unipuncta (Haw)]; S. feltiae Filipjev (du Mexique) pour le vers-gris panaché [Peridroma saucia (Hbn.)]; et S. feltiae (de toutes provenances) pour le vers-gris à dos rouge [Euxoa ochrogaster (Gwen)] et pour l’arpenteuse du printemps [Paleacrita vernata (Peck.)]. Quand les valeurs du LD50 et les taux de parasitisme des hôtes ont été considérés tous les deux, le nématode le plus prometteur pour la lutte biologique de ceux distribués au niveau du sol a été S. feltiae contre la légionnaire bertha.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhurst, R.J. 1986. Controlling insects in soil with entomogenous nematodes. pp. 265267in Samon, R.A., Vlak, J.M., and Peters, D. (Eds.), Fundamental and Applied Aspects of Invertebrate Pathology. Foundation of the Fourth Int. Collq. Invertebr. Pathol., Wageningen, Holland.Google Scholar
Capinera, J.L., Pellinsier, D., Menout, G.S., and Epsky, N.D.. 1988. Control of black cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae), with entomogeneous nematodes (Nematoda: Steinernematidae, Heterorhabditidae). J. Invertebr. Pathol. 52: 427435.CrossRefGoogle Scholar
Gaugler, R. 1988. Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agric. Ecosystems Environ. 24: 351360.CrossRefGoogle Scholar
Gray, P.A., and Johnson, D.T.. 1983. Survival of the nematode Neoaplectana carpocapsae in relation to soil temperature, moisture and time. J. Georgia ent. Soc. 18: 454460.Google Scholar
Hudson, W.G., and Nguyen, K.B.. 1989. Effects of soil moisture, exposure time, nematode age, and nematode density on laboratory infections of Scapteriscus vicinus and S. acletus (Orthoptera: Gryllotalpidae) by Neoaplectana sp. (Rhabditida Steinemematidae). Environ. Ent. 18: 719722.CrossRefGoogle Scholar
Kaya, H.K. 1985. Entomogenous nematodes for insect control in IPM systems. pp. 283302in Hoy, M.A., and Herzog, D.C. (Eds.), Biological Control in Agricultural IPM Systems. Academic Press, New York, NY.CrossRefGoogle Scholar
Kondo, E., and Ishibashi, N.. 1985. Effect of soil moisture on the survival and infectivity of the entomogenous nematode, Steinernema feltiae (DD-136). Proc. Assoc. Plant Prot. Kyushu 186: 186190.CrossRefGoogle Scholar
Laumond, C., Mauleon, H., and Kermarrec, A.. 1979. Donnès nouvelles sur le spectre d'hotes et le parasitisme du nematode entomophage Neoaplectana carpocapsae. Entomophaga 24: 1327.CrossRefGoogle Scholar
Litchfield, J.T., and Wilcoxin, F.. 1949. A simplified method of evaluating dose-effect experiments. J. Pharm. Exp. Therapeutics 96: 99103.Google ScholarPubMed
Molyneux, A.S., and Bedding, R.A.. 1984. Influence of soil texture and moisture on the infectivity of Heterorhabditis sp. D1 and Steinernema glaseri for larvae of the sheep blowfly, Lucilia cuprina. Nematologica 30: 358365.Google Scholar
Morris, O.N. 1985. Susceptibility of 31 species of agricultural insect pests to the entomogenous nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Can. Ent. 117: 401407.CrossRefGoogle Scholar
Morris, O.N., Converse, V., and Harding, J.. 1990. Virulence of entomopathogenic nematode–bacteria complexes for larvae of noctuids, a geometrid, and a pyralid. Can. Ent. 122: 309319.CrossRefGoogle Scholar
Poinar, G.O. Jr., 1983. Recent developments in the use of nematodes in the control of insect pests. Proc. 10th Int. Cong. Plant Pathol. 2: 751758.Google Scholar
Schroeder, W.J. 1987. Laboratory bioassays and field trials of entomogenous nematodes for control of Diaprepes abbreviatus (Coleoptera: Curculionidae) in citrus. Environ. Ent. 16: 987989.CrossRefGoogle Scholar
Simons, W.R., and Poinar, G.O. Jr., 1973. The ability of Neoaplectana carpocapsae (Steinemematidae: Nematoda) to survive extended periods of desiccation. J. Invertebr. Pathol. 22: 228230.CrossRefGoogle Scholar
Toba, H.H., Lindegren, J.E., Turner, J.E., and Vail, P.V.. 1983. Susceptibility of the Colorado potato beetle and the sugarbeet wireworm to Steinernema feltiae and S. glaseri. J. Nematol. 15: 597601.Google ScholarPubMed
Wright, R.J., Villani, M.G., and Agudelo-Silva, F.. 1988. Steinernematid and Heterorhabditid nematodes for control of larval European chafers and Japanese beetles (Coleoptera: Scarabaeidae) in potters yew. J. econ. Ent. 81: 152157.CrossRefGoogle Scholar