Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T19:31:24.193Z Has data issue: false hasContentIssue false

THE EFFECT OF THE FUNGI CERATOCYSTIS MINOR (HEDGECOCK) HUNT, CERATOCYSTIS MINOR (HEDGECOCK) HUNT VAR. BARRASII TAYLOR, AND SJB 122 ON REPRODUCTION OF THE SOUTHERN PINE BEETLE, DENDROCTONUS FRONTALIS ZIMMERMANN (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

David S. Goldhammer
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, USA 72701
Frederick M. Stephen
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, USA 72701
Timothy D. Paine
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, USA 72701

Abstract

The southern pine beetle, Dendroctonus frontalis Zimmermann, was studied in the laboratory to determine the influence of associated fungi on its reproduction. First-generation (P) surface-sterilized beetles associated with mycangial fungi (Ceratocystis minor [Hedgecock] Hunt var. barrasii Taylor or SJB 122) constructed more galleries and laid more eggs, at faster rates, than P beetles not associated with these mycangial fungi. No significant differences occurred among non-surface-sterilized P beetles associated with the phoretic blue staining fungus Ceratocystis minor (Hedgecock) Hunt and mycangial fungi or among progeny of P beetles (F1 generation) carrying mycangial fungi. P and F1 surface-sterilized beetles produced more eggs at a greater density than non-surface-sterilized beetles associated with blue stain, but gallery length and the rate of construction were not different. P and F1 surface-sterilized beetles laid more eggs and constructed galleries faster than surface-sterilized beetles that carried no mycangial fungi. The re-emergence rate of beetles was fastest for P beetles associated with C. minor and significantly slower for fungus-free P beetles, P beetles carrying only mycangial fungi, and F1 beetles, respectively. The F1 generation emerged fastest when associated with both mycangial fungi and slowest when associated with SJB 122, and C. minor var. barrasii or no fungus, respectively. This study employed a successful new rearing technique for isolating specific southern pine beetle/fungal associations.

Résumé

Le dendroctone méridional du pin, Dendroctonus frontalis Zimmermann, a été étudié en laboratoire afin de déterminer l’influence de champignons qui lui sont associés sur sa reproduction. Des dendroctones de première génération (P) stérélisés en surface et associés à des champignons mycangiaux (Ceratocystis minor [Hedgecock] Hunt var. barrasii Taylor ou SJB 122) ont construit plus de galleries et ont pondu plus d’oeufs, et à un taux plus élevé, que des dendroctones P non-associés à ces champignons mycangiaux. Il n’y a pas eu de différence significative parmi les dendroctones P non-stérélisés en surface et associés à Ceratocystis minor (Hedgecock) Hunt et au champignons mycangiaux, ou parmi les descendants (génération F1) des dendroctones portant les champignons mycangiaux. Des dendroctones P et F1 stérélisés en surface ont produit plus d’oeufs, à une densité plus élevée, que des dendroctones non-stérélisés associés à C. minor, mais la longueur des galleries et le taux de construction n’étaient pas différents. Des dendroctones P et F1 stérélisés en surface ont produit plus d’oeufs et ont construit des galleries plus rapidement que des dendroctones stérélisés en surface qui ne portaient pas de champignons mycangiaux. Le taux de ré-émergence des dendroctones a été plus élevé pour des individus P associés à C. minor et significativement plus faible pour des individus P dépourvus de champignons, des individus P portant seulement des champignons mycangiaux et des individus F1, respectivement. Le taux d’émergence de la génération F1 a été maximal lorsque les dendroctones étaient associés aux deux champignons mycangiaux et minimal lorsqu’associés à SJB 122 et C. minor var. barrasii ou aucun champignon, respectivement. Cette étude a utilisé, avec succès, une nouvelle méthode d’élevage pour l’isolation d’associations dendroctone/champignon spécifiques.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barras, S.J. 1970. Antagonism between Dendroctonus frontalis and the fungus Ceratocystis minor. Ann. ent. Soc. Am. 63(4): 11871190.CrossRefGoogle Scholar
Barras, S.J. 1972. Improved White's solution for surface sterilization of pupae of Dendroctonus frontalis. J. econ. Ent. 65: 1504.CrossRefGoogle ScholarPubMed
Barras, S.J. 1975. Release of fungi from mycangia of southern pine beetles observed under a scanning electron microscope. Z. ang. Ent. 79: 173176.CrossRefGoogle Scholar
Barras, S.J., and Hodges, J.D.. 1969. Carbohydrates of inner bark of Pinus taeda as affected by Dendroctonus frontalis and associated microorganisms. Can. Ent. 101: 489493.CrossRefGoogle Scholar
Barras, S.J., and Perry, T.J.. 1972. Fungal symbionts in the prothoracic mycangium of Dendroctonus frontalis (Coleoptera: Scolytidae). Z. ang. Ent. 71: 95104.CrossRefGoogle Scholar
Barras, S.J., and Taylor, J.J.. 1973. Varietal Ceratocystis minor identified from mycangium of Dendroctonus frontalis. Mycopathologia 50(4): 293305.Google Scholar
Basham, H.G. 1970. Wilt of loblolly pine inoculated with the bluestain fungi of the genus Ceratocystis. Phytopath. 60: 750754.CrossRefGoogle Scholar
Bridges, J.R. 1985. Relationships of symbiotic fungi to southern pine beetle population trends. pp. 127135in Branham, S.J., and Thatcher, R.C. (Eds.), Integrated Pest Management Research Symposium: The Proceedings. Gen. Tech. Rep. SO-56. USDA For. Serv., So. For. Exp. Sta., New Orleans, LA.Google Scholar
Bridges, J.R., and Moser, J.C.. 1984. A continuous mass-rearing technique for the southern pine beetle (Coleoptera: Scolytidae). J. Georgia ent. Soc. 19(4): 480482.Google Scholar
Bridges, J.R., Nettleton, W.A., and Conner, M.D.. 1985. Southern pine beetle (Coleoptera: Scolytidae) infestations without the bluestain fungus, Ceratocystis minor. J. econ. Ent. 78: 325327.CrossRefGoogle Scholar
Bridges, J.R., and Perry, T.J.. 1985. Effects of mycangial fungi on gallery construction and distribution of bluestain in southern pine beetle infested pine bolts. J. ent. Sci. 20(2): 271275.Google Scholar
Browne, L.E. 1972. An emergence cage and refrigerated collector for wood-boring insects and their associates. J. econ. Ent. 65: 14991501.CrossRefGoogle Scholar
Clark, E.W. 1965. A simple rearing technique for obtaining eggs or young larvae of the southern pine beetle. U.S. For Serv. Res. Note SE-44. 2 pp.Google Scholar
Clark, E.W., and Osgood, E.A.. 1966. Southern pine beetles. pp. 305310in Insect Colonization and Mass Production. Academic Press, New York, NY.CrossRefGoogle Scholar
Clarke, A.L., Webb, J.W., and Franklin, R.T.. 1979. Fecundity of the southern pine beetles in laboratory pine bolts. Ann. ent. Soc. Am. 72: 229231.CrossRefGoogle Scholar
Craighead, F.C. 1928. Interrelation of tree-killing barkbeetles (Dendroctonus) and blue stains. J. For. 26: 886887.Google Scholar
Feldman, R.M., Curry, G.L., and Coulson, R.N.. 1981. A mathematical model of field population dynamics of the southern pine beetle, Dendroctonus frontalis. Ecol. Modelling 13: 261281.CrossRefGoogle Scholar
Franklin, R.T. 1970. Observations on the blue stain-southern pine beetle relationship. J. Georgia ent. Soc. 5(1): 5357.Google Scholar
Happ, G.M., Happ, C., and Barras, S.J.. 1971. Fine structure o the prothoracic mycangium, a chamber for the culture of symbiotic fungi in the southern pine beetle, Dendroctonus frontalis. Tissue & Cell 3(2): 295308.CrossRefGoogle Scholar
Happ, G.M., Happ, C., and Barras, S.J.. 1975. Bark beetle fungal symbiosis. III. Ultrastructure of conidiogenesis in a Sporothrix ectosymbiont of the southern pine beetle. Can. J. Bot. 53(23): 27022711.CrossRefGoogle Scholar
Happ, G.M., Happ, C., and Barras, S.J.. 1976. Bark beetle fungal symbiosis. II. Fine structure of a basidiomycetous ectosymbiont of the southern pine beetle. Can. J. Bot. 54: 10491062.CrossRefGoogle Scholar
Hetrick, L.A. 1949. Some overlooked relationships of southern pine beetle. J. econ. Ent. 42(3): 466469.CrossRefGoogle Scholar
Hodges, J.D., Barras, S.J., and Mauldin, J.K.. 1968. Amino acids in inner bark of loblolly pine, as affected by the southern pine beetle and microorganisms. Can. J. Bot. 46: 14671472.CrossRefGoogle Scholar
Hodges, J.D., and Pickard, L.S.. 1970. Lightning in the ecology of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 103: 4457.CrossRefGoogle Scholar
Lanier, G.N., and Wood, D.L.. 1968. Controlled mating, karyology, morphology, and sex-ratio in the Dendroctonus ponderosae complex. Ann. ent. Soc. Am. 61(2): 517526.CrossRefGoogle Scholar
Lih, M.P., and Stephen, F.M.. 1983. Use of computer simulation models to predict expected tree mortality and monetary loss from SPB spots — a research update. For. Bull. R8-FB/P1. USDA For. Serv., So. Region, Atlanta, GA.Google Scholar
Lih, M.P., and Stephen, F.M.. 1987. Southern pine beetle fact sheet no. 42. Arkansas SPB model — A computer simulation model. USDA For. Pest Man. Prot. Rep. R8–PR5.Google Scholar
Moser, J.C. 1985. Use of sporothecae by phoretic Tarsonemus mites to transport ascospores of coniferous blue-stain fungi. Trans. Br. Mycol. Soc. 84: 750753.CrossRefGoogle Scholar
Moser, J.C., and Bridges, J.R.. 1986. Tarsonemus (Acarina: Tarsonemidae) mites phoretic on the southern pine beetle (Coleoptera: Scolytidae): attachment sites and numbers of bluestain (Ascomycetes: Ophiostomataceae) ascospores carried. Proc. ent. Soc. Wash. 88(2): 297299.Google Scholar
Nelson, R.M., and Beal, J.A.. 1929. Experiments with bluestain fungi in southern pines. Phytopath. 19: 11011106.Google Scholar
Paine, T.D., and Birch, M.C.. 1983. Acquisition and maintenance of mycangial fungi by Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Environ. Ent. 12: 13841386.CrossRefGoogle Scholar
Rumbold, C.T. 1931. Two blue-staining fungi associated with bark beetle infestation of pines. J. Agric. Res. 43(10): 847873.Google Scholar
SAS Institute Inc. 1985. SAS User's Guide: Statistics, 1985 Edition. SAS Institute Inc., Cary, NC. 956 pp.Google Scholar
Stephen, F.M., and Lih, M.P.. 1985. A Dendroctonus frontalis infestation growth model: organization, refinement and utilization. pp. 186194in Branham, S.J., and Thatcher, R.C. (Eds.), Integrated Pest Management Research Symposium: The Proceedings. Gen. Tech. Rep. SO-56. USDA For. Serv, So. For. Exp. Sta., New Orleans, LA.Google Scholar
Stephen, F.M., Searcy, J.L., and Hertel, G.D. (Eds.). 1980. Modelling southern pine beetle populations. USDA For. Serv. Tech. Bull. No. 1630. 174 pp.Google Scholar
Stephen, F.M., and Taha, H.A.. 1979. Area-wide estimation of southern pine beetle populations. Environ. Ent. 8: 850855.CrossRefGoogle Scholar
Turnbow, R.H., Coulson, R.N., Hu, L., and Billings, R.F.. 1982. Procedural guide for using the interactive version of the TAMBEETLE model of southern pine beetle population and spot dynamics. Texas Agri. Exp. Sta. MP-1518. 24 pp.Google Scholar
Van Sambeek, J.W., and Kile, B.W.. 1981. Egg gallery excavation and brood production by reemerged and newly emerged females of Dendroctonus frontalis Zimm. J. Georgia ent. Soc. 16(3): 345352.Google Scholar
Yearian, W.C., Gouger, R.J., and Wilkinson, R.C.. 1972. Effects of the bluestain fungus, Ceratocystis ips, on the development of Ips bark beetles in pine bolts. Ann. ent. Soc. Am. 65(2): 481487.CrossRefGoogle Scholar