Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T19:46:03.001Z Has data issue: false hasContentIssue false

Effect of pea flour and pea flour extracts on Sitophilus oryzae

Published online by Cambridge University Press:  02 April 2012

Xingwei Hou
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Wes Taylor
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Paul Fields*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
1Corresponding author (e-mail: [email protected]).

Abstract

Protein-rich pea flour is an antifeedant and a repellent and is toxic to the rice weevil, Sitophilus oryzae (L.), but its mode of action is not known. Results showed that protein-rich pea flour had no fumigant effect on adult survival or offspring production of S. oryzae. In a contact experiment, immobilized weevils were fed every other day and had their abdomens brushed with protein-rich pea flour or wheat flour on the alternate days. Insects treated with protein-rich pea flour had an average longevity of 9.6 days, which was significantly shorter than that for insects treated with wheat flour (11.3 days) or brushed controls (17.6 days). These results suggest that toxins from the protein-rich pea flour may be able to penetrate the insect cuticle. Midguts from weevils fed protein-rich pea flour, a pea flour extract, or a mixture of pea peptides contained numerous bubbles. Midgut tissues in these treated adults were injured, as shown by dual staining with the fluorescent dyes calcein AM and propidium iodide. The volume of the bubbles increased rapidly when insects were fed protein-rich pea flour or pea flour extract. There were no bubbles found in the midguts of S. oryzae that fed on wheat kernels or wheat flour.

Résumé

La farine de pois riche en protéine est un antiappétant et est toxique à la charançon du riz, Sitophilus oryzae (L.), mais on ne connaît pas le mode d'action. Les résultats ont montré que la farine de pois riche en protéine n'agissait pas comme fumigant ni sur les adultes, ni sur la production de la progéniture avec S. oryzae. Dans une expérience où la farine de pois riche en protéine était mise en contact avec les insectes, ils étaient immobilisés, et nourris aux 2 jours. Les jours alternés, les abdomens des insectes étaient brossés, soit avec de la farine de pois riche en protéine ou avec de la farine de blé. Les insectes traités avec la farine de pois riche en protéine avaient une durée de vie moyenne de 9,6 jours; moins que les insectes traités avec la farine de blé (11,3 jours), ou les témoins (17,6 jours). Ces données suggèrent que les toxines de la farine de pois riche en protéine peuvent franchir la cuticule de l'insecte. L'intestin moyen des charançons avait plusieurs bulles de gaz quand les insectes étaient nourris avec de la farine de pois riche en protéine, un extrait de farine de pois, ou un mélange de peptides en provenance des pois. Les tissus d'intestin moyen dans ces adultes étaient endommagés, démontré par les colorants fluorescents à double action, calcéine AM et iodure propidium. Le volume des bulles augmentait rapidement quand les insectes étaient nourris à la farine de pois riche en protéine ou à l'extrait de pois. Il n'y avait pas de bulles dans les intestins moyens de S. oryzae nourri aux graines de blé ou à la farine de blé.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebaum, S.W., and Birk, Y. 1979. Saponins. In Herbivores: their interaction with secondary plant metabolites. Edited by Rosenthal, G.A. and Janzen, D.H.. Academic Press, New York. pp. 539565.Google Scholar
Applebaum, S.W., Marco, S., and Birk, Y. 1969. Saponins as possible factors of resistance of legume seeds to attack of insects. Journal of Agricultural and Food Chemistry, 17: 618622.CrossRefGoogle Scholar
Bell, E.A. 1977. Toxins in seeds. In Biochemical aspects of plant and animal coevolution. Edited by Harborne, J.B.. Academic Press Inc., New York. pp. 143161.Google Scholar
Bernays, E.A., and Simpson, S.J. 1982. Control of food intake. Advances in Insect Physiology, 16: 59118.CrossRefGoogle Scholar
Bodnaryk, R.P., Fields, P.G., Xie, Y.S., and Fulcher, K.A., inventors; Her Majesty the Queen in right of Canada, assignee. 1999 September 21. Insecticidal factor from peas. US patent 5,955,082.Google Scholar
Bunthof, C.J., Bloemen, K., Breeuwer, P., Rombouts, F.M., and Abee, M. 2001. Flow cytometric assessment of viability of lactic acid bacteria. Applied and Environmental Microbiology, 67: 23262335.CrossRefGoogle ScholarPubMed
Collins, A.M., and Donoghue, A.M. 1999. Viability assessment of honey bee, Apis mellifera, sperm using dual fluorescent staining. Theriogenology, 51: 15131523.CrossRefGoogle ScholarPubMed
Coombs, C.W., Billings, C.J., and Porter, J.E. 1977. The effect of yellow split-peas (Pisum sativum L.) and other pulses on the productivity of certain strains of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and the ability of other strains to breed thereon. Journal of Stored Products Research, 13: 5358.CrossRefGoogle Scholar
Daly, L.E. 2000. Interpretation and uses of medical statistics. Blackwell Publishing, London.CrossRefGoogle Scholar
Delobel, B., Grenier, A., Gueguen, J., Ferrasson, E., and Mbailao, M., inventors; Institut national de la recherche agronomique, assignee. 1999 November 18. Use of a polypeptide derived from a PA1b legume albumen as insecticide. PCT patent WO 99/58695.Google Scholar
Dev, S., and Koul, O. 1997. Insecticides of natural origin. Harwood Academic Publishers, Amsterdam, Netherlands.Google Scholar
Fields, P.G., Xie, Y.S., and Hou, X. 2001. Repellent effect of pea (Pisum sativum) fractions against stored-product insects. Journal of Stored Products Research, 37: 359370.CrossRefGoogle ScholarPubMed
Golob, P., Moss, C., Dales, M., Fidgen, A., and Evans, J. 1999. The use of spices and medicinals as bioactive protectants for grains. FAO Agricultural Services Bulletin 137.Google Scholar
Gressent, F., Rahioui, I., and Rahbe, Y. 2003. Characterization of a high-affinity binding site for the pea albumin 1b entomotoxin in the weevil Sitophilus. European Journal of Biochemistry, 270: 24292435.CrossRefGoogle ScholarPubMed
Harborne, J.B., Boulter, D., and Turner, B.L. 1971. Chemotaxonomy of the Leguminosae. Academic Press Inc., London.Google Scholar
Haugland, R.P. 2002. Handbook of fluorescent probes and research products. 9th ed. Molecular Probes Inc., Eugene, Oregon.Google Scholar
Higgins, T.J.V., Chandler, P.M., Randall, P.J., Spencer, D., Beach, L.R., Blagrove, R.J., Kortt, A.A, and Inglis, A.S. 1986. Gene structure, protein structure and regulation of the synthesis of a sulfur-rich protein in pea seeds. Journal of Biological Chemistry, 261: 1112411130.CrossRefGoogle ScholarPubMed
Holloway, G.J. 1986. The potency and effect of phytotoxins within yellow split-pea (Pisum sativum) and adzuki bean (Vigna angularis) on survival and reproductive potential of Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Bulletin of Entomological Research, 76: 287295.CrossRefGoogle Scholar
Hou, X., and Fields, P.G. 2003 a. Granary trial of protein-enriched pea flour for the control of three stored-product insects in barley. Journal of Economic Entomology, 96: 10051015.CrossRefGoogle ScholarPubMed
Hou, X., and Fields, P.G. 2003 b. Effectiveness of protein-enriched pea flour for the control of stored-product beetles. Entomologia Experimentalis et Applicata, 108: 125131.CrossRefGoogle Scholar
Hou, X., Fields, P.G., Flinn, P., Perez-Mendoza, J., and Baker, J. 2004 a. Control of stored-product beetles with combinations of protein-rich pea flour and parasitoids. Environmental Entomology, 33: 671680.CrossRefGoogle Scholar
Hou, X., Fields, P.G., and Taylor, W. 2004 b. Combination of protein-rich pea flour and pea extract with insecticides and enzyme inhibitors for control of stored-product beetles. The Canadian Entomologist, 136: 581590.CrossRefGoogle Scholar
Hou, X., Fields, P.G., and Taylor, W.G. 2004 c. The effect of repellents on the penetration into packaging by stored-product insects. Journal of Stored Products Research, 40: 4754.CrossRefGoogle Scholar
Jacobson, M. 1989. Botanical pesticides: past, present, future. In Insecticides of plant origin. Edited by Arnason, J.T., Philogène, B.J.R., and Morand, P.. American Chemical Society, Washington, D.C. pp. 110.Google Scholar
Jouvensal, L., Quillien, L., Ferrasson, E., Rahbe, Y., Gueguen, J., and Vovelle, F. 2003. PA1b, an insecticidal protein extracted from pea seeds (Pisum sativum): 1H-2-D NMR study and molecular modeling. Biochemistry, 42: 1191511923.CrossRefGoogle ScholarPubMed
Liu, H., Dong, Y., and Wu, W. 1998. Effect of celangulin V on the midgut cells and the digestive enzyme activities of Mythimna separata (Walker) larvae. Acta Entomologica Sinica, 41: 258262.Google Scholar
Maddrell, S.H.P. 1969. Secretion by the malpighian tubules of Rhodnius: the movements of ions and water. Journal of Experimental Biology, 51: 7197.CrossRefGoogle Scholar
Nardon, P., and Grenier, A.M. 1989. Endocytobiosis in Coleoptera: biological, biochemical, and genetic aspects. In Insect endocytobiosis: morphology, physiology, genetics, evolution. Edited by Schwemmler, W. and Gassner, G.. CRC Press Inc., Boca Raton, Florida. pp. 175216.Google Scholar
Nogueira, N.F.S, Gonzales, M., Garcia, E.M., and De Souza, W. 1997. Effect of azadirachtin on the fine structure of the midgut of Rhodnius prolixus. Journal of Invertebrate Pathology, 69: 5863.CrossRefGoogle ScholarPubMed
Prakash, A., and Rao, J. 1997. Botanical pesticides in agriculture. CRC Press Inc., Boca Raton, Florida.Google Scholar
SAS Institute Inc. 2000. SAS OnlineDoc®. Version 8. SAS Institute Inc., Cary, North Carolina.Google Scholar
Shaaya, E., Kostjukovski, M., Eilberg, J., and Sukprakarn, C. 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research, 33: 715.CrossRefGoogle Scholar
Slaney, A.C, Robbins, H.L, and English, L. 1992. Mode of action of Bacillus thuringiensis toxin CryIIIA: an analysis of toxicity in Leptinotarsa decemlineata (Say) and Diabrotica undecimpunctata howardi Barber. Insect Biochemistry and Molecular Biology, 22: 918.CrossRefGoogle Scholar
SPSS Inc. 2003. SigmaStat®. Version 3.0 [computer program]. SPSS Inc., Chicago, Illinois.Google Scholar
Su, H.C.F, Speirs, R.D., and Mahany, P.G. 1972. Toxic effects of soybean saponin and its calcium salt on the rice weevil. Journal of Economic Entomology, 65: 844847.CrossRefGoogle Scholar
Taylor, W.G., Fields, P.G, and Elder, J.L. 2004 a. Insecticidal components from field pea extracts: isolation and separation of peptide mixtures related to pea albumin 1b. Journal of Agricultural and Food Chemistry, 52: 74917498.CrossRefGoogle ScholarPubMed
Taylor, W.G., Sutherland, D.H., Olson, D.J.H., Ross, A.R.S., and Fields, P.G. 2004 b. Insecticidal components from field pea extracts: sequences of some variants of pea albumin1b. Journal of Agricultural and Food Chemistry, 52: 74997506.CrossRefGoogle Scholar
Taylor, W.G., Fields, P.G., and Sutherland, D.H. 2004 c. Insecticidal components from field pea extracts: soyasaponins and lysolecithins. Journal of Agricultural and Food Chemistry, 52: 74847490.CrossRefGoogle ScholarPubMed
Weaver, D., and Subramanyam, Bh. 2000. Botanicals. In Alternatives to pesticides in stored product IPM. Edited by Subramanyam, Bh. and Hagstrum, D.. Kluwer Academic Publishers, Dordrecht. pp. 303320.CrossRefGoogle Scholar
Xie, Y.S., Bodnaryk, R., and Fields, P.G. 1996. A rapid and simple flour disk bioassay for testing natural substances active against stored-product insects. The Canadian Entomologist, 128: 865875.CrossRefGoogle Scholar