Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:02:42.692Z Has data issue: false hasContentIssue false

EFFECT OF HOST AND NONHOST TREES ON THE GROWTH AND DEVELOPMENT OF THE FOREST TENT CATERPILLAR, MALACOSOMA DISSTRIA (LEPIDOPTERA: LASIOCAMPIDAE)

Published online by Cambridge University Press:  31 May 2012

R.W. Nicol
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J.T. Arnason
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
B. Helson*
Affiliation:
Canadian Forest Service, Natural Resources Canada, 1219 Queen St., Sault Ste. Marie, Ontario, Canada P6A 5M7
M.M. Abou-Zaid
Affiliation:
Canadian Forest Service, Natural Resources Canada, 1219 Queen St., Sault Ste. Marie, Ontario, Canada P6A 5M7
*
1Author to whom all correspondence should be addressed.

Abstract

Larval growth and pupal parameters of the forest tent caterpillar (Malacosoma disstria Hübner) reared on the foliage of two host trees (Populus tremuloides Michx. and Acer saccharum Marsh.) and one nonhost tree (Acer rubrum L.) were quantified. This was achieved by undertaking a larval development bioassay under controlled laboratory conditions, but using fresh leaves collected in two field seasons. Larvae fed foliage of P. tremuloides grew exponentially and began to pupate after 3 weeks. Larvae fed with A. saccharum gained significantly less weight and had a reduced number of larvae pupate, and the pupae weighed significantly less than their counterparts fed on P. tremuloides. All larvae that were fed the foliage of A. rubrum died within 2 weeks. A nutritional utilization bioassay with fourth-instar larvae revealed that the foliage of A. saccharum has a growth-inhibitory component, whereas that of A. rubrum is antifeedant. Reasons are discussed for the discrepancy between the many reports of A. saccharum being a food host for M. disstria in the field and the laboratory results.

Résumé

La croissance larvaire et les caractéristiques de la chrysalide ont été quantifiées chez des Livrées des forêts (Malacosoma disstria Hübner) en élevage sur le feuillage de deux arbres hôtes (Populus tremuloides Michx. et Acer saccharum Marsh.) et un arbre non hôte (Acer rubrum L.). Les chenilles ont été observées en laboratoire dans des conditions contrôlées et elles étaient nourries de feuilles fraîches cueillies au cours de deux saisons de croissance. Les chenilles nourries de feuilles de P. tremuloides ont subi une croissance exponentielle et ont commencé leur nymphose après 3 semaines. Chez les chenilles nourries du feuillage d’A. saccharum, les gains de masse ont été significativement moins importants, un moins grand nombre d’entre elles sont parvenues à la nymphose et les chrysalides obtenues avaient une masse significativement moins élevée que celles du groupe précédent. Toutes les chenilles nourries de feuilles d’A. rubrum sont mortes en moins de 2 semaines. Une expérience sur l’alimentation des larves de quatrième stade a démontré que le feuillage d’A. sacharrum contient une substance inhibitrice de la croissance et que le feuillage d’A. rubrum inhibe l’alimentation. Les contradictions entre les différentes études sur les propriétés d’A. saccharum comme hôte de M. disstria en nature et en laboratoire sont analysées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batzer, H.O., and Morris, R.C.. 1971. Forest Tent Caterpillar. United States Department of Agriculture Forest Pest Leaflet 9.Google Scholar
Bauce, É., Crépin, M., and Carisey, N.. 1994. Spruce budworm growth, development and food utilization on young and old balsam fir trees. Oecologia 97: 499507.CrossRefGoogle Scholar
Bernays, E.A., and Chapman, R.F.. 1987. The evolution of deterrent responses in plant- feeding insects. pp. 159173in Chapman, R.F., Bernays, E.A., and Stoffolano, J.G. Jr., (Eds.), Perspectives in Chemoreception and Behavior. Springer-Verlag, New York.CrossRefGoogle Scholar
Davidson, A.G., and Prentice, R.M.. 1967. Important Forest Insects and Diseases of Mutual Concern to Canada, the United States and Mexico. Queen's Printer, Ottawa, Ontario.Google Scholar
Grisdale, D. 1985. Malacosoma disstria. pp. 369379in Singh, P., and Morre, R.F. (Eds.), Handbook of Insect Rearing. Elsevier, New York.Google Scholar
Gross, H.L. 1991. Dieback and growth loss of sugar maple associated with defoliation by the forest tent caterpillar. Forestry Chronicle 67: 3342.CrossRefGoogle Scholar
Hodson, A.C. 1941. An ecological study of the forest tent caterpillar, Malacosoma disstria Hbn., in Northern Minnesota. Minnesota Agricultural Experiment Station Technical Bulletin 148: 155.Google Scholar
Magasi, L.P. 1995. Forest Insect pests in the Maritimes region. pp. 1126in Armstrong, J.A., and Ives, W.G.H. (Eds.), Forest Insect Pests in Canada. Natural Resources Canada, Ottawa, Ontario.Google Scholar
Martineau, R. 1984. Insects Harmful to Forest Trees. Multiscience Publications Ltd., Toronto, Ontario.Google Scholar
National Forestry Database. 1994. Compendium of Canadian Forestry Statistics. Canadian Council of Forestry Ministers, Ottawa, Ontario.Google Scholar
Nicol, R.W. 1997. An investigation into the activity of the phytochemical defenses of red maple (Acer rubrum L.) and sugar maple (Acer saccharum Marsh.) against the forest tent caterpillar (Malacosoma disstria Hübner). M.Sc. thesis, University of Ottawa, Ottawa, Ontario.Google Scholar
Oliver, A.D. 1964. Control studies of the forest tent caterpillar, Malacosoma disstria in Louisiana. Journal of Economic Entomology 57: 157161.CrossRefGoogle Scholar
Prebble, M.L. 1974. Forest tent caterpillar. pp. 200203in Prebble, M.L. (Ed.), Aerial Control of Forest Insects in Canada. Department of the Environment, Ottawa, Ontario.Google Scholar
Retnakaran, A. 1978. Conditioned feeding preference in the forest tent caterpillar. Bi-Monthly Research Notes of the Canadian Forest Service 34(5): 32.Google Scholar
Schroeder, L.A. 1976. Effect of food deprivation on the efficiency of utilization of dry matter, energy, and nitrogen by larvae of the cherry scallop moth, Calocalpe undulata. Annals of the Entomological Society of America 69: 5558.CrossRefGoogle Scholar
Scriber, J.M., and Slansky, F.. 1981. The nutritional ecology of immature insects. pp. 183211in Mittler, T.E., Radovsky, F.J, and Resh, V.H. (Eds.), Annual Review of Entomology 26.Google Scholar
Stehr, F.W., and Cook, E.F.. 1968. A Revision of the Genus Malacosoma Hübner in North America (Lepidoptera: Lasiocampidae); Systematics, Biology, Immatures, and Parasites. Smithsonian Institution Press, Washington, D.C.Google Scholar
SYSTAT. 1992. SYSTAT® for Windows™. SPSS Inc., Chicago, Illinois.Google Scholar
Waldbauer, G.P. 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229288.CrossRefGoogle Scholar